• Title/Summary/Keyword: compression parameters

Search Result 1,053, Processing Time 0.024 seconds

Simulation of Compression Molding with Extensional & Shear Viscosity for Fiber-Reinforced Polymeric Composites (섬유강화 고분자 복합재료의 압축성형에 있어서 인장점성과 전단점성을 고려한 유동해석)

  • 조선형;김이곤
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.311-318
    • /
    • 1997
  • In recent years, compression molding of fiber-reinforced thermoplastics has been increased in commercial aspects. During a compression molding process of composites, the flow analysis must be developed in order to accurately predict the finished part properties as a function of the molding process parameters. In this paper, a new model is presented which can be used to predict the flow under consideration of the slip of mold-composites and extensional & shear viscosity ratio M and slip parameter$\alpha$ on the mold filling parameters are discussed.

  • PDF

An Experimental Study on Sink Mark Formation in Compression Molded SMC Parts with Rib (리브를 가진 일체형 SMC 압축성형재의 Sink Mark 형성에 관한 실험적 연구)

  • 정진호;임용택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1490-1500
    • /
    • 1995
  • Compression molding of SMC (Sheet Molding Compound) in a thin plaque with substructures like a rib is involved with the formation of surface defect along the centerline over the rib area called by sink mark depending on process parameters. The surface quality of the external panels in automotive manufacturing is so critical that this kind of defect should be eliminated during manufacturing stages. The effect of process parameters on sink mark formation and the distribution of chopped fiberglasses in the compression molded thin plaque with a rib was experimentally investigated in the present study. In order to estimate the effect of the molding parameters such as molding temperature, mold closing speed, depth of the rib, corner radius of the rib, and final molded part thickness of flat portion on the depth of sink mark and the distribution of fiberglasses in the molded SMC part with the rib under the present experimental conditions, the molding parameters used in experiments were non-dimensionalized equation for predicting the depth of sink mark was determined through dimensional analysis based on the experimental data. The orientation and distribution of fiberglasses and fillers which directly affect the formation and depth of sink mark were investigated by taking the photographs of the cross-sectional area of the molded specimen using scanning electron microscope. The experimental results proposed from this investigation are useful in understanding the formation of sink mark and predicting the depth of sink mark in compression molding of SMC with substructures.

Effect of Compression Test Conditions on Texture Profile Analysis of Surimi-based Products (압착실험조건이 어육연제품의 조직감 면모분석에 미치는 영향)

  • Lee, Young-Seung;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.225-230
    • /
    • 2000
  • The texture profile analysis (TPA) parameters of commercial surimi-based products were evaluated at various compression test conditions. Cylindrical specimens of diameter to length (D/L) ratio of 1.0, 1.5, B.() cm/min were compressed to 50, 65 and 80% using crosshead speeds of 1.7, 3.3, 6.7 cm/min. TPA parameters of three surimi-based products (hardness-1, hardness-2, cohesiveness, springiness, chewiness and gumminess) were analyzed statistically. The TPA parameters were modified by dividing with cross section area and strain. The TPA parameters were affected by D/L and compression ratio except for crosshead speed for all three surimi-based products. The ecommended test conditions for TPA of surimi-based products seem to be D/L of 1.5, compression ratio of 80%, and crosshead speed of 1.7 to 6.7 cm/min.

  • PDF

The Study for the KOMPSAT-3 Image Data Compression

  • Lee S.G.;Lee S.T.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.298-300
    • /
    • 2005
  • Satellite payload on-board date compression unit are use for saving date storage space and reducing time to transmit payload data to the ground station. The KOMPSAT-3 payload will generate higher data rate than KOMPSAT-2 due to its better ground sample distance capacity. High input data rate and limited output transmission data rate might lead excessive compression and degraded image quality. This paper presents a trade-off study about data storage capacity and compression parameters for estimated KOMPSAT-3 system.

  • PDF

Performance Analysis of a Carbon Dioxide(R744) Two-Stage Compression and One-Stage Expansion Refrigeration Cycle ($CO_2$용 2단압축 1단팽창 냉동 사이클의 성능 분석)

  • Roh, G.S.;Son, C.H.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.70-75
    • /
    • 2009
  • In this paper, cycle performance analysis of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature in the carbon dioxide two-stage refrigeration cycle. The main results were summarized as follows : The cooling capacity of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, compressor efficiency and gas cooling pressure, but decreases with the increasing mass flowrate ratio and evaporating temperature. The compression work of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, outlet temperature of gas cooler, gas cooling pressure and evaporating temperature, but decreases with the increasing compressor efficiency and mass flowrate ratio. The COP of two-stage compression and one-stage expansion refrigeration system increases with the increasing compressor efficiency, but decreases with the increasing superheating degree, gas cooling pressure, mass flowrate ratio and evaporating temperature. Therefore, superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system have an effect on the cooling capacity, compressor work and COP of this system.

  • PDF

Theoretical analysis of stress-strain behavior of multi-layer RC beams under flexure

  • Ertekin Oztekin
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.505-515
    • /
    • 2024
  • In this study, obtaining theoretical stress-strain curves and determining the parameters defining the equivalent rectangular stress block were aimed for 3 and 4-layered rectangular Reinforced Concrete (RC) cross-sections subjected to flexure. For these aims, the analytical stress-strain model proposed by Hognestad was chosen for the concrete grades (20 MPa≤fck≤60 MPa) used in this study. The tensile strength of the concrete was neglected and the thickness of the concrete layers in the compression zone of the concrete cross-section was taken as equal. In addition, while concrete strength was kept constant within each layer, concrete strengths belonging to separate layers were increased from the neutral axis towards the outer face of the compression zone of the concrete cross-section. After the equivalent rectangular stress block parameters were determined by numerical iterations, variations of these parameters depending on concrete strength in layers and layer numbers were obtained. Finally, some analytical equations have been proposed to predict the equivalent stress block parameters for the 3 and 4-layered RC cross-sections and validities of these proposed equations were shown by different metrics in this study.

Compression history detection for MP3 audio

  • Yan, Diqun;Wang, Rangding;Zhou, Jinglei;Jin, Chao;Wang, Zhifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.662-675
    • /
    • 2018
  • Compression history detection plays an important role in digital multimedia forensics. Most existing works, however, mainly focus on digital image and video. Additionally, the existed audio compression detection algorithms aim to detect the trace of double compression. In real forgery scenario, multiple compression is more likely to happen. In this paper, we proposed a detection algorithm to reveal the compression history for MP3 audio. The statistics of the scale factor and Huffman table index which are the parameters of MP3 codec have been extracted as the detecting features. The experimental results have shown that the proposed method can effectively identify whether the testing audio has been previously treated with single/double/triple compression.

3-Dimensional Deformation Analysis for Compression Molding of Polymeric Composites with Random/Unidirectional Fiber-Reinforced Laminates (무배향/일방향 섬유강화 적층매트를 갖는 플라스틱 복합재의 3차원 압축변형 해석)

  • 채경철;조선형;김이곤
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.23-30
    • /
    • 1999
  • Fiber reinforced composite materials are widely used in automotive industry to produce parts that are large, thin, lightweight, strong and stiff. It is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional fiber mats. The characteristics of flow fronts such as a bulging phenomenon for random mat and unidirectional fiber mat and slip parameters are studied numerically. And the effects of viscosity ratio and stack type on mold filling parameters are also discussed.

  • PDF

Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns

  • Ren, Qing-Xin;Hou, Chao;Lam, Dennis;Han, Lin-Hai
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.667-686
    • /
    • 2014
  • Tapered concrete filled double skin steel tubular (CFDST) columns have been used in China for structures such as electricity transmission towers. In practice, the bearing capacity related to the connection details on the top of the column is not fully understood. In this paper, the experimental behaviour of tapered CFDST stub columns subjected to axial partial compression is reported, sixteen specimens with top endplate and ten specimens without top endplate were tested. The test parameters included: (1) tapered angle, (2) top endplate thickness, and (3) partial compression area ratio. Test results show that the tapered CFDST stub columns under axial partial compression behaved in a ductile manner. The axial partial compressive behaviour and the failure modes of the tapered CFDST stub columns were significantly influenced by the parameters investigated. Finally, a simple formula for predicting the cross-sectional capacity of the tapered CFDST sections under axial partial compression is proposed.

Axial compression performance of basalt-fiber-reinforced recycled-concrete-filled square steel tubular stub column

  • Zhang, Xianggang;Gao, Xiang;Wang, Xingguo;Meng, Ercong;Wang, Fang
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.559-571
    • /
    • 2020
  • This study aimed to inspect the axial compression mechanical performance of basalt-fiber-reinforced recycled - concrete (BFRRC)-filled square steel tubular stub column. The replacement ratio of recycled coarse aggregate (RCA) and the basalt fiber (BF) dosage were used as variation parameters, and the axial compression performance tests of 15 BFRRC-filled square steel tubular stub column specimens were conducted. The failure mode and the load-displacement/strain curve of the specimen were measured. The working process of the BFRRC-filled square steel tubular stub column was divided into three stages, namely, elastic-elastoplasticity, sudden drawdown, and plasticity. The influence of the design parameters on the peak bearing capacity, energy dissipation performance, and other axial compression performance indexes was discussed. A mathematical model of segmental stiffness degradation was proposed on the basis of the degradation law of combined secant-stiffness under axial compression. The full-process curve equation of axial compressive stress-strain was proposed by introducing the influencing factors, including the RCA replacement ratio and the BF dosage, and the calculated curve agreed well with the test-measured curve.