• Title/Summary/Keyword: compression parameters

Search Result 1,053, Processing Time 0.024 seconds

The Characteristics of Ozone Formation from a Gaseous Fueled SI Engine with Various Operating Parameters (여러 가지 운전조건에 따른 가스연료엔진 오존발생량 연구)

  • 김창업;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.86-92
    • /
    • 2003
  • To analyze the characteristics of ozone formation, measurements of the concentrations of individual exhaust hydrocarbon species have been made under various engine operating parameters in a 2-liter 4-cylinder engine for natural gas and LPG. Tests were performed at constant engine speed, 1800 rpm for two compression ratios of 8.6 and 10.6, with various operating parameters, such as excess air ratio of 1.0~1.6, bmep of 250~800 na and spark timing of BTDC 10~$55^{\circ}$. It was found that the natural gas gave the less ozone formation than LPG in various operating conditions. This was accomplished by reducing the emissions of propylene($C_3H_6$), which has relatively high maximum incremental reactivity factor, and propane($C_3H_8$) that originally has large portion of LPG. In addition, the natural gas show lower values in the specific reactivity and brake specific reactivity. Higher compression ratio of the test engine showed higher non methane HC emissions. However, specific reactivity value decreased since fuel species of HC emissions increase. brake specific reactivity showed almost same values under high bmep, over 500kPa for both fuels. This means that the increase of non methane HC emissions and the decrease of specific reactivity with higher bmep affect each other simultaneously. With advanced spark timing, brake specific reactivity values of LPG were increased while those of natural gas showed almost constant values.

Experimental Study on the Operating Characteristics of an Environmental Control System for Avionic Equipments (항공장비용 환경제어시스템의 운전특성에 관한 실험적 연구)

  • Park, Hyung-Pil;Kang, Hoon;Chi, Yong-Nam;Choi, Hee-Ju;Byeon, Young-Man;Kim, Young-Jin;Oh, Kwang-Yoon;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.809-816
    • /
    • 2010
  • An environmental control system is installed to dissipate the thermal load in avionic equipments that are mounted under an aircraft. The operating characteristics of the system change with variations in the control parameters. In this study, an environmental control system was designed and built using R-124 by adopting a vapor compression cycle. The operating characteristics of this system were observed by varying the control parameters, such as refrigerant charging amount, opening of the expansion device, compressor rotation speed, and blower rotation speed. The effect of the control parameters on the environmental control system was analyzed and an optimum control method was identified.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Numerical and experimental analysis on the axial compression performance of T-shaped concrete-filled thin-walled steel

  • Xuetao Lyu;Weiwei Wang;Huan Li;Jiehong Li;Yang Yu
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.383-401
    • /
    • 2024
  • The research comprehensively studies the axial compression performance of T-shaped concrete-filled thin-walled steel tubular (CTST) long columns after fire exposure. Initially, a series of tests investigate the effects of heating time, load eccentricity, and stiffeners on the column's performance. Furthermore, Finite Element (FE) analysis is employed to establish temperature and mechanical field models for the T-shaped CTST long column with stiffeners after fire exposure, using carefully determined key parameters such as thermal parameters, constitutive relations, and contact models. In addition, a parametric analysis based on the numerical models is conducted to explore the effects of heating time, section diameter, material strength, and steel ratio on the axial compressive bearing capacity, bending bearing capacity under normal temperature, as well as residual bearing capacity after fire exposure. The results reveal that the maximum lateral deformation occurs near the middle of the span, with bending increasing as heating time and eccentricity rise. Despite a decrease in axial compressive load and bending capacity after fire exposure, the columns still exhibit desirable bearing capacity and deformability. Moreover, the obtained FE results align closely with experimental findings, validating the reliability of the developed numerical models. Additionally, this study proposes a simplified design method to calculate these mechanical property parameters, satisfying the ISO-834 standard. The relative errors between the proposed simplified formulas and FE models remain within 10%, indicating their capability to provide a theoretical reference for practical engineering applications.

Finite element analysis of shear-critical reinforced concrete walls

  • Kazaz, Ilker
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.143-162
    • /
    • 2011
  • Advanced material models for concrete are not widely available in general purpose finite element codes. Parameters to define them complicate the implementation because they are case sensitive. In addition to this, their validity under severe shear condition has not been verified. In this article, simple engineering plasticity material models available in a commercial finite element code are used to demonstrate that complicated shear behavior can be calculated with reasonable accuracy. For this purpose dynamic response of a squat shear wall that had been tested on a shaking table as part of an experimental program conducted in Japan is analyzed. Both the finite element and material aspects of the modeling are examined. A corrective artifice for general engineering plasticity models to account for shear effects in concrete is developed. The results of modifications in modeling the concrete in compression are evaluated and compared with experimental response quantities.

Temperature Dependence of Dynamic Behavior of Commercially Pure Titanium by the Compression Test (CP-Ti의 동적거동에 미치는 온도의 영향)

  • Lee, Su-Min;Seo, Song-Won;Park, Kyoung-Joon;Min, Oak-Key
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1152-1158
    • /
    • 2003
  • The mechanical behavior of a commercially pure titanium (CP-Ti) is investigated at high temperature Split Hopkinson Pressure Bar (SHPB) compression test with high strain-rate. Tests are performed over a temperature range from room temperature to 1000$^{\circ}C$ with interval of 200$^{\circ}C$ and a strain-rate range of 1900 ∼ 2000/sec. The true flow stress-true strain relations depending on temperature are achieved in these tests. For construction of constitutive equation from the true flow stress-true strain relation, parameters for the Johnson-Cook constitutive equation is determined. And the modified Johnson-Cook equation is used for investigation of behavior of flow stress in vicinity of recrystalization temperature. The Modified Johnson-Cook constitutive equation is more suitable in expressing the dynamic behavior of a CP-Ti at high temperature, i.e. about recrystalization temperature.

Analysis of the Dynamic Behavior and Lubrication Characteristics of a Small Reciprocating Compressor (소형 왕복동 압축기의 동적 거동 및 윤활특성 해석)

  • Kim, Tae-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1138-1145
    • /
    • 2003
  • In this paper, a study on the dynamic behavior and lubrication characteristics of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and oil films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and Gumbel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft. The results explored the effects of design parameters on the stability and lubrication characteristics of the compression mechanism.

The Elastic Critical Loads of Sinusolidally Tapered Symmetric Compression Members (정현상 대칭으로 Taper진 변단면 압축재의 임계하중)

  • 오금열;홍종국;김순철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.27-34
    • /
    • 2000
  • The elastic critical loads of prismatic compression members can be easily determined by the conventional analytic method. In the cases of sinusoidally tapered members, however, the determination of elastic critical loads become impossible when one relies on the analytic method. In this paper, the critical loads of sinusoidally tapered members were determined by finite element method. Generally the output or results of numerical analysis are valid only when the governing parameters of a given system(or problem) have particular values. To make the practical applications easy, the critical loads determined by finite element method are expressed by some algebraic equations. The constants contained in the algebraic equations were determined by regression technique. The elastic critical loads estimated by the proposed algebraic equations coincide well with those by finite element method.

  • PDF

Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads

  • Rajanna, T.;Banerjee, Sauvik;Desai, Yogesh M.;Prabhakara, D.L.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.37-55
    • /
    • 2016
  • In this study, the influence of centrally placed circular and square cutouts on vibration and buckling characteristics of different ply-oriented laminated panels under the action of compressive and/or tensile types of non-uniform in-plane edge loads are investigated. The panels are inspected under the action of uniaxial compression, uniaxial tension and biaxial, compression-tension, loading configurations. Furthermore, the effects of different degrees of edge restraints and panel aspect ratios are also addressed in this work. Towards this, a nine-node heterosis plate element has been adopted which includes the effect of shear deformation and rotary inertia. According to the results, the tensile buckling loads are higher than that of compressive buckling loads. However, the tensile buckling load continuously reduces with the increased cutout sizes irrespective of ply-orientations. This is also true for compressive buckling loads except for some particular ply-orientations with higher sized cutouts.

Buckling of non-homogeneous orthotropic conical shells subjected to combined load

  • Sofiyev, A.H.;Kuruoglu, N.
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.1-19
    • /
    • 2015
  • The buckling analysis is presented for non-homogeneous (NH) orthotropic truncated conical shells subjected to combined loading of axial compression and external pressure. The governing equations have been obtained for the non-homogeneous orthotropic truncated conical shell, the material properties of which vary continuously in the thickness direction. By applying Superposition and Galerkin methods to the governing equations, the expressions for critical loads (axial, lateral, hydrostatic and combined) of non-homogeneous orthotropic truncated conical shells with simply supported boundary conditions are obtained. The results are verified by comparing the obtained values with those in the existing literature. Finally, the effects of non-homogeneity, material orthotropy, cone semi-vertex angle and other geometrical parameters on the values of the critical combined load have been studied.