• Title/Summary/Keyword: compression coding

Search Result 828, Processing Time 0.033 seconds

Low Complexity Motion Estimation Search Method for Multi-view Video Coding (다시점 비디오 부호화를 위한 저 복잡도 움직임 추정 탐색 기법)

  • Yoon, Hyo-Sun;Kim, Mi-Young
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.539-548
    • /
    • 2013
  • Although Motion estimation (ME) plays an important role in digital video compression, it requires a complicated search procedure to find an optimal motion vector. Multi-view video is obtained by capturing one three-dimensional scene with many cameras at different positions. The computational complexity of motion estimation for Multi-view video coding increases in proportion to the number of cameras. To reduce computational complexity and maintain the image quality, a low complexity motion estimation search method is proposed in this paper. The proposed search method consists of four-grid diamond search patten, two-gird diamond search pattern and TZ 2 Point search pattern. These search patterns exploit the characteristics of the distribution of motion vectors to place the search points. Experiment results show that the speedup improvement of the proposed method over TZ search method (JMVC) can be up to 1.8~4.5 times faster by reducing the computational complexity and the image quality degradation is about to 0.01~0.24 (dB).

Depth compression method for 3D video (3차원 영상을 위한 깊이 영상 압축 방법)

  • Nam, Jung-Hak;Hwang, Neung-Joo;Cho, Gwang-Shin;Sim, Dong-Gyu;Lee, Soo-Youn;Bang, Gun;Hur, Nam-Ho
    • Journal of Broadcast Engineering
    • /
    • v.15 no.5
    • /
    • pp.703-706
    • /
    • 2010
  • Recently, a need to encode a depth image has been raising with the deployment of 3D video services. The 3DV/FTV group in the MPEG has standardized the compression method of depth map image. Because conventional depth map coding methods are independently encoded without referencing the color image, coding performance of conventional algorithms is poor. In this letter, we proposed a novel method which rearranged modes of depth blocks according to modes of corresponding color blocks by using a correlation between color and depth images. In experimental results, the proposed method achieves bits reduction of 2.2% compared with coding method based on JSVM.

A Perceptual Audio Coder Based on Temporal-Spectral Structure (시간-주파수 구조에 근거한 지각적 오디오 부호화기)

  • 김기수;서호선;이준용;윤대희
    • Journal of Broadcast Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-73
    • /
    • 1996
  • In general, the high quality audio coding(HQAC) has the structure of the convertional data compression techniques combined with moodels of human perception. The primary auditory characteristic applied to HQAC is the masking effect in the spectral domain. Therefore spectral techniques such as the subband coding or the transform coding are widely used[1][2]. However no effort has yet been made to apply the temporal masking effect and temporal redundancy removing method in HQAC. The audio data compression method proposed in this paper eliminates statistical and perceptual redundancies in both temporal and spectral domain. Transformed audio signal is divided into packets, which consist of 6 frames. A packet contains 1536 samples($256{\times}6$) :nd redundancies in packet reside in both temporal and spectral domain. Both redundancies are elminated at the same time in each packet. The psychoacoustic model has been improved to give more delicate results by taking into account temporal masking as well as fine spectral masking. For quantization, each packet is divided into subblocks designed to have an analogy with the nonlinear critical bands and to reflect the temporal auditory characteristics. Consequently, high quality of reconstructed audio is conserved at low bit-rates.

  • PDF

A Balancing Method to improve efficiency of Stereo Coding (스테레오 코딩의 효율화를 위한 밸런싱 방법)

  • Kim, Jong-Su;Choi, Jong-Ho;Lee, Kang-Ho;Kim, Tae-Yong;Choi, Jong-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.87-94
    • /
    • 2007
  • Imbalances in focus, luminance and color between stereo Pairs could cause disparity vector estimation error and increment of transmission data. If the distribution of errors in residual image is large, it may influence to lowering of compression performance. Therefore, in this paper, we propose an efficient balancing method between stereo pairs to reduce the effect. For this, we registrated stereo images using a FFT based method to consider the pixels in the occluded region, we eliminated the pixels of blocks which has large error of disparity vector estimation in balancing function estimation. The balancing function has estimated using histogram specification, local information of target image and residual image between stereo images. Experiments show that the proposed method is effective in error distribution, PSNR and disparity vector estimation. We expect that our method can be improving compression efficiency in stereo coding system.

  • PDF

Lossless Color Image Compression using Inter-channel Correlation (채널 간 상관관계를 이용한 무손실 컬러 이미지 압축)

  • Kim, Se-Yun;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.962-968
    • /
    • 2011
  • The conventional lossless compression of color images is to apply a compression method to each of color components separately, without considering the channel correlation. There had been several methods that consider the channel correlation, but they were confined to the compression of satellite or aerial images only, and the performance of these algorithms to general photos is not satisfactory. This paper proposes a new lossless color image compression method that exploits the correlation between the color components. Specifically, asymmetric sampling is applied to transform an image into mosaic image and the rest, which are compressed separately. By using the information from the compressed mosaic image, the rest images are predicted for further reducing the information to be compressed. Experimental results show that the proposed method improves the compression performance by 35% over the conventional separate compression methods and 10% over the existing methods that exploit the channel correlation.

Object-based Compression of Thermal Infrared Images for Machine Vision (머신 비전을 위한 열 적외선 영상의 객체 기반 압축 기법)

  • Lee, Yegi;Kim, Shin;Lim, Hanshin;Choo, Hyon-Gon;Cheong, Won-Sik;Seo, Jeongil;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.738-747
    • /
    • 2021
  • Today, with the improvement of deep learning technology, computer vision areas such as image classification, object detection, object segmentation, and object tracking have shown remarkable improvements. Various applications such as intelligent surveillance, robots, Internet of Things, and autonomous vehicles in combination with deep learning technology are being applied to actual industries. Accordingly, the requirement of an efficient compression method for video data is necessary for machine consumption as well as for human consumption. In this paper, we propose an object-based compression of thermal infrared images for machine vision. The input image is divided into object and background parts based on the object detection results to achieve efficient image compression and high neural network performance. The separated images are encoded in different compression ratios. The experimental result shows that the proposed method has superior compression efficiency with a maximum BD-rate value of -19.83% to the whole image compression done with VVC.

An Efficient Compression Method of Integral Images Using Adaptive Block Modes (적응적인 블록 모드를 이용한 집적 영상의 효율적인 압축 방법)

  • Jeon, Ju-Il;Kang, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper, we propose an efficient compression method of the integral images. The integral imaging is a well-known technique to represent and record three-dimensional images. The proposed method is based on three dimensional discrete cosine transform (3D-DCT). The 3D-DCT techniques for the integral images have been reported as an efficient coding method for the integral images which reduces the redundancies between adjacent elemental images. The proposed method is a compression method efficient to integral images using adaptive block mode(ABM), based on the 3D-DCT technique. In the ABM, 3D-DCT blocks adaptive to the characteristics of integral images are constructed, which produces variable block size 3D-DCT blocks, and then 3D-DCTs for the 3D blocks are performed. Experimental results show that the proposed method gives significant improvement in coding efficiency. Especially, at the high bit-rates, the proposed method is more excellent since the overhead incurred by the proposed method take less part of the total bits.

A Study on the Concatenation System of Compression Coding and Secrecy Coding for Digital Signature in On-Line Transmission (온 라인 전송에 있어서 디지털 서명을 위한 압축코딩과 암호코딩의 결합 시스템에 관한 연구)

  • 한승조;이상호;구연설
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.10-23
    • /
    • 1994
  • To transmit information efficiently and securely in On-line transmission, data compression, secrecy and authentication are required. In this paper, we propose LZWH4 which creates two compression strings with applying Hnageul to LZW. design HDES1 by extending S-box (S1-S16) which satsfies SAC and correlation coefficient as a partial countermeasure of Differential Cryptanalysis and implement LZWHDES1 which concatenates efficiently these for digital signature in On-line transmission. Also HDES1 is more in U.D.(Unicity Distance) than DES and HDES. We show that the proposed LZWHDES1 reduces processing times than LZWHDES which LZW is directly concatnated to DES and LZWHDES which LZWH1 is directly concatenated to HDES. LZWHDES1 can be used to digital signature system as conventional key cryptosystem.

  • PDF

A New Vocoder based on AMR 7.4Kbit/s Mode for Speaker Dependent System (화자 의존 환경의 AMR 7.4Kbit/s모드에 기반한 보코더)

  • Min, Byung-Jae;Park, Dong-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.691-696
    • /
    • 2008
  • A new vocoder of Code Excited Linear Predictive (CELP) based on Adaptive Multi Rate (AMR) 7.4kbit/s mode is proposed in this paper. The proposed vocoder achieves a better compression rate in an environment of Speaker Dependent Coding System (SDSC) and is efficiently used for systems, such as OGM(Outgoing message) and TTS(Text To Speech), which needs only one person's speech. In order to enhance the compression rate of a coder, a new Line Spectral Pairs(LSP) code-book is employed by using Centroid Neural Network (CNN) algorithm. In comparison with original(traditional) AMR 7.4 Kbit/s coder, the new coder shows 27% higher compression rate while preserving synthesized speech quality in terms of Mean Opinion Score(MOS).

3D-Distortion Based Rate Distortion Optimization for Video-Based Point Cloud Compression

  • Yihao Fu;Liquan Shen;Tianyi Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.435-449
    • /
    • 2023
  • The state-of-the-art video-based point cloud compression(V-PCC) has a high efficiency of compressing 3D point cloud by projecting points onto 2D images. These images are then padded and compressed by High-Efficiency Video Coding(HEVC). Pixels in padded 2D images are classified into three groups including origin pixels, padded pixels and unoccupied pixels. Origin pixels are generated from projection of 3D point cloud. Padded pixels and unoccupied pixels are generated by copying values from origin pixels during image padding. For padded pixels, they are reconstructed to 3D space during geometry reconstruction as well as origin pixels. For unoccupied pixels, they are not reconstructed. The rate distortion optimization(RDO) used in HEVC is mainly aimed at keeping the balance between video distortion and video bitrates. However, traditional RDO is unreliable for padded pixels and unoccupied pixels, which leads to significant waste of bits in geometry reconstruction. In this paper, we propose a new RDO scheme which takes 3D-Distortion into account instead of traditional video distortion for padded pixels and unoccupied pixels. Firstly, these pixels are classified based on the occupancy map. Secondly, different strategies are applied to these pixels to calculate their 3D-Distortions. Finally, the obtained 3D-Distortions replace the sum square error(SSE) during the full RDO process in intra prediction and inter prediction. The proposed method is applied to geometry frames. Experimental results show that the proposed algorithm achieves an average of 31.41% and 6.14% bitrate saving for D1 metric in Random Access setting and All Intra setting on geometry videos compared with V-PCC anchor.