Proceedings of the Korean Geotechical Society Conference
/
2004.03b
/
pp.50-57
/
2004
In this study reinforcing effect of soil nailed-drilled shafts subjected to axial and lateral loads were evaluated. Special attention was given to the reinforcing effects of soil nails placed from the drilled shafts to surrounding weathered- and soft-rocks based on model tests, numerical analyses and load tests. The model tests and numerical analyses are conducted to analyze the reinforcing effect of various conditions of number, inclination, position and length. The results of 1/40 scale model tests and numerical analyses show that as the number of reinforcing level increases, the incremental effect of reinforcement tends to increase, whereas the reinforcing effect on relative position is negligible. In addition there is a reinforcing effect as the inclination angle increaes up to 30 degrees. Based on the results of tensile load tests, soil nailed-drilled shafts has a considerably smaller settlement to reach the ultimate level when compared with the result of un-reinforced drilled shafts. For compression tests, there is a reinforcing effect of about 200% measured.
Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design lot improved material properties. Composite tubes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibers, in the matrix and in the fiber-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of Gr/E(Graphite/Epoxy) tubes on static and impact tests. The collapse characteristics and energy absorption of a variety of tubes have been examined. Changes in the lay-up which increased the modulus increased the energy absorption of the tubes. Based on the test results, the following remarks can be made: Among CA15, CA00 and CA90 curves the CA90 tube exhibits the highest crush load throughout the whole crush process, and max load increases as interlaminar number increase. Among all the tubes type CC90 has the largest specific crushing stress of 52.60 kJ/kg which is much larger than other tubes.
The energy-saving block and invisible multi-ribbed frame composite wall (EBIMFCW) is a new type of load-bearing wall. The study of this paper focus on it is hysteresis rule under horizontal cyclic loading. Firstly, based on the experimental data of the twelve specimens under horizontal cyclic loading, the influence of two important parameters of axial compression ratio and shear-span ratio on the restoring force model was analyzed. Secondly, a tetra-linear restoring force model considering four feature points and the degradation law of unloading stiffness was established by combining theoretical analysis and regression analysis of experimental data, and the theoretical formula of the peak load of the EBIMFCW was derived. Finally, the hysteretic path of the restoring force model was determined by analyzing the hysteresis characteristics of the typical hysteresis loop. The results show that the curves calculated by the tetra-linear restoring force model in this paper agree well with the experimental curves, especially the calculated values of the peak load of the wall are very close to the experimental values, which can provide a reference for the elastic-plastic analysis of the EBIMFCW.
The need for carbon neutrality in the world strives the construction industry to reduce the use of construction materials. Aiming to this, recycled aggregate concrete (RAC) could be used as it reduces the carbon dioxide emissions. Currently, RAC is mainly used in non-structural members of civil constructions, seldom used in structural members. To broaden its structural use, a new type of composite column, i.e., the square and rectangular RAC filled FRP tubes (CFFTs), has been concerned in this study. The investigation on their axial compressive behavior through physical test and numerical analysis demonstrated that the load-carrying capacity of such column is reduced with the increase of replacement ratio of recycled aggregate and aspect ratio of section but can be improved by the increase of FRP confining stiffness and corner radius, said capacity can be equivalent to their steel reinforced concrete counterparts. At failure, the hoop strain at corner of tube is unexpectedly smaller than that at flat side of the tube although the FRP tube ruptured at its corner first, revealing a premature failure. Besides, a design-oriented stress-strain model of concrete and an analysis-oriented finite element model are proposed to predict the load-strain response of square and rectangular CFFT columns, which facilitates the engineering use of RAC in load-carrying structural members.
Due to higher stiffness to weight, higher corrosion resistance, higher strength to weight ratios and good durability, concrete composite structures provide many advantages as compared with conventional materials. Thus, they have wide applications in the field of concrete construction. This research focuses on the structural behavior of steel-tube CFRP confined concrete (STCCC) columns under axial concentric loading. A nonlinear finite element analysis (NLFEA) model of STCCC columns was simulated using ABAQUS which was then, calibrated for different material and geometric models of concrete, steel tube and CFRP material using the experimental results from the literature. The comparative study of the NLFEA predictions and the experimental results indicated that the proposed constitutive NLFEA model can accurately predict the structural performance of STCCC columns. After the calibration of NLFEA model, an extensive parametric study was performed to examine the effects of different critical parameters of composite columns such as; (i) unconfined concrete strength, (ii) number of CFRP layers, (iii) thickness of steel tube and (iv) concrete core diameter, on the axial load capacity. Furthermore, a large database of axial strength of 700 confined concrete compression members was developed from the previous researches to give an analytical model that predicts the ultimate axial strength of composite columns accurately. The comparison of the predictions of the proposed analytical model was done with the predictions of 216 NLFEA models from the parametric study. A close agreement was represented by the predictions of the proposed constitutive NLFEA model and the analytical model.
The confined concrete stress-strain curves utilised in computational models of concrete-filled steel tubular (CFST) columns can have a significant influence on the accuracy of the predicted behaviour. A generic model is proposed for predicting the stress-strain behaviour of confined concrete in short circular, elliptical and octagonal CFST columns subjected to axial compression. The finite element (FE) analysis is carried out to simulate the concrete confining pressure in short circular, elliptical and octagonal CFST columns. The concrete confining pressure relies on the geometric and material parameters of CFST columns. The post-peak behaviour of the concrete stress-strain curve is determined using independent existing experimental results. The strength reduction factor is derived for predicting the descending part of the confined concrete behaviour. The fibre element model is developed for the analysis of circular, elliptical and octagonal CFST short columns under axial loading. The FE model and fibre element model accounting for the proposed concrete confined model is verified by comparing the computed results with experimental results. The ultimate axial strengths and complete axial load-strain curves obtained from the FE model and fibre element model agree reasonably well with experimental results. Parametric studies have been carried out to examine the effects of important parameters on the compressive behaviour of short circular, elliptical and octagonal CFST columns. The design model proposed by Liang and Fragomeni (2009) for short circular, elliptical and octagonal CFST columns is validated by comparing the predicted results with experimental results.
The object of this paper is to investigate collapse characteristics of CF/Epoxy(Carbon Fiber/Epoxy resin) composite tubes on the change of interlaminar number and fiber orientation angle of outer and to evaluate reappearance of collapse characteristics on the change of tension strength of fibers under static and impact axial compression loads. When a CF/Epoxy composite tube is mushed, static/impact energy is consumed by friction between the loading plate and the splayed fiends of the tube, by fracture of the fibers, matrix and their interface. In general, CF/Epoxy tube with 6 interlaminar number(C-type) absorbed more energy than other tubes(A, B, D-types). The maximum collapse load seemed to increase as the interlaminar number of such tubes increases. The collapse mode depended upon orientation angle of outer of CF/Epoxy tubes and loading status(static/impact). Typical collapse modes of CF/Epoxy tubes are wedge collapse mode, splaying collapse mode and fragmentation collapse mode. The wedge collapse mode was shorn in case of CF/Epoxy tubes with 0$^{\circ}$ orientation angle of outer under static and impact loadings. The splaying collapse mode was shown in only case of CF/Epoxy tubes with 90$^{\circ}$ orientation angie or outer under static loadings, however in impact tests those were collapsed in fragmentation mode. So that CF/Epoxy tube with 6 interlaminar number and 90$^{\circ}$ outer orientation angle presented to the optimal collapse characteristics.
This paper presents experiment and bearing capacity analyses of steel dual-lintel column (SDC) joints in Chinese traditional style buildings. Two SDC interior joints and two SDC exterior joints, which consisted of dual box-section lintels, circular column and square column, were designed and tested under low cyclic loading. The force transferring mechanisms at the panel zone of SDC joints were proposed. And also, the load-strain curves at the panel zone, failure modes, hysteretic loops and skeleton curves of the joints were analyzed. It is shown that the typical failure modes of the joints are shear buckling at bottom panel zone, bending failure at middle panel zone, welds fracturing at the panel zone, and tension failure of base metal in the heat-affected zone of the joints. The ultimate bearing capacity of SDC joints appears to decrease with the increment of axial compression ratio. However, the bearing capacities of exterior joints are lower than those of interior joints at the same axial compression ratio. In order to predict the formulas of the bending capacity at the middle panel zone and the shear capacity at the bottom panel zone, the calculation model and the stress state of the element at the panel zone of SDC joints were studied. As the calculated values showed good agreements with the test results, the proposed formulas can be reliably applied to the analysis and design of SDC joints in Chinese traditional style buildings.
Previous researches showed that confined concrete with Fiber-Reinforced Plastic (FRP) sheets significantly improves the strength and ductility of concrete compared with unconfined concrete. However, the retrofit design of concrete with FRP materials requires an accurate estimate of the performance enhancement due to the confinement mechanism. The object of this research is to predict the compressive strength and strain of concrete confined with FRP wraps. For the purpose of this research, 102 test specimens were fabricated and loaded statically under uniaxial compression. Axial load, axial and lateral strains were investigated to predict the ultimate stress and strain. Also, to achieve reliability of proposed strength and strain models for FRP-confined concrete, another series of uniaxial compression test results were used. This paper presents strength and strain models for FRP-confined concrete. The proposed models to estimate the ultimate stresses and failure strains produce satisfactory predictions as compared to current design equations. In conclusion, it is proposed that the modified stress-strain model of concrete cylinders could be effectively used for the repair and retrofit of concrete columns.
Previous experimental researches indicate that reinforced concrete beam-column joints play an important role in the mechanical properties of moment resisting frame structures, so as to require proper design. In order to get better understanding of the beam-column joint performance, a rational model needs to be developed. Based on the former considerations, two typical models for calculating the shear carrying capacity of the beam-column joint including the inelastic reinforced concrete joint model and the softened strut-and-tie model are selected to be introduced and analyzed. After examining the applicability of two typical models mentioned earlier to interior beam-column joints, several adjustments are made to get better predicting of the test results. For the softened strut-and-tie model, four adjustments including modifications of the depth of the diagonal strut, the inclination angle of diagonal compression strut, the smeared stress of mild steel bars embedded in concrete, as well as the softening coefficient are made. While two adjustments for the inelastic reinforced concrete joint model including modifications of the confinement effect due to the column axial load and the correction coefficient for high concrete are made. It has been proved by test data that predicted results by the improved softened strut-and-tie model or the modified inelastic reinforced concrete joint model are consistent with the test data and conservative. Based on the test results, it is also not difficult to find that the improved beam-column joint model can be used to predict the joint carrying capacity and cracks development with sufficient accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.