• Title/Summary/Keyword: compression axial load

Search Result 393, Processing Time 0.023 seconds

Material Resistance Factors for Reinforced Concrete Flexural and Compression Members (철근콘크리트 휨부재 및 압축부재의 재료조항계수 적용에 관한 연구)

  • 김재홍;이재훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.21-30
    • /
    • 2000
  • In the Ultimate Strength Design, the design strength of a member is determined by multiplying the strength reduction factor to the nominal strength. This concept may be a reasonable approach, however it can not consider failure modes appropriately. Moreover, column design strength diagram show an abrupt change at a low level of axial load, which does not seem to be reasonable. This research compares the design strength determined by the strength resistance factors. As the material resistance factors for flexure and compression, 0.65 and 0.90 are proposed for concrete and steel, respectively. The design strength calculation process by applying material resistance factors addresses failure modes more effectively than by applying member strength reduction factor, and provides more resnable design strength for reinforced concrete flexural and compression members.

Shear deformation model for reinforced concrete columns

  • Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.39-52
    • /
    • 2008
  • Column shear failures observed during recent earthquakes and experimental data indicate that shear deformations are typically associated with the amount of transverse reinforcement, column aspect ratio, axial load, and a few other parameters. It was shown that in some columns shear displacements can be significantly large, especially after flexural yielding. In this paper, a piecewise linear model is developed to predict an envelope of the cyclic shear response including the shear displacement and corresponding strength predictions at the first shear cracking, peak strength, onset of lateral strength degradation, and loss of axial-load-carrying capacity. Part of the proposed model is developed using the analysis results from the Modified Compression Field Theory (MCFT). The results from the proposed model, which uses simplified equations, are compared with the column test data.

A Study on the Structural Behavior of Welded Box Columns (강제 교각의 거동에 관한 연구)

  • 김인한;손용석;엄진호;송준엽;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.87-94
    • /
    • 1999
  • The structural behavior of welded steel box columns subjected to axial compression and combined load of axial and horizontal load is described. The nonlinear stress-strain relation of the material and residual stress resulted from welds were included in the analysis. Inelastic buckling analysis of hollow rectangular sections of various width-thickness and slenderness ratios was carried out using the semi-analytical and spline finite strip method to investigate the local and global bucking stress and mode interaction. The buckling stress was compared with test results and design curves. Post-buckling behavior was traced by the finite element program(ADINA) and compared with experimental results. The comparison showed that the ultimate stress can be used for the design purpose.

  • PDF

comparative Study on confinement Steel Amount of RC Column Bent (철근콘크리트 교각 심부구속철근량의 비교연구)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.239-246
    • /
    • 1999
  • recently there have been many destructive seismic events in Kobe Japan in 1995 and in Northridge California USA in 1994. etc. The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. Comparing the earthquake magnitude in Korea with those in the west coast of the USA it may be said that the current seismic design requirements of the Korean Bridge Design Standard Specifications provides too conservation design results especially for transverse reinforcement details and amount in reinforced concrete columns. This fact usually makes construction problems in concrete casting due to transverse reinforcement congestion. And the effective stiffness Ieff depends on the axial load P(Ag{{{{ {f }_{ck } }}) and the longitudinal reinforcement ratio Ast/Ag and it is conservative to use the effective stiffness Ieff than the gross section moment Ig. Seismic design for transverse reinforcement content of concrete column is considered of extreme-fiber compression strain R-factor axial load and stiffness etc.

  • PDF

Buckling Analysis of Laminated Composite Cylindrical Shells with Nonlinear Prebuckling (비선형전좌굴을 고려한 복합적층원통셸의 좌굴해석)

  • 원종진;이종선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.13-20
    • /
    • 1994
  • The effects of prebuckling on the buckling of laminated composite cylindrical shells are investigated. Both axial compression and lateral pressure are considered for laminated composite cylindrical shells with length to radius ratios usually associated with container vessels. The shell walls are made of a laminate with several symmetric ply orientations. The study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when prebuckling displacements are neglected.

  • PDF

Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads

  • Park, Jai Woo;Choi, Sung Mo
    • Steel and Composite Structures
    • /
    • v.14 no.5
    • /
    • pp.453-472
    • /
    • 2013
  • This paper presents the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened CFT (concrete-filled steel tubes) columns under axial loads. Circular and square specimens were selected to investigate the retrofitting effects of CFRP sheet on CFT columns. Test parameters are cross section of CFT, D/t (B/t) ratios, and the number of CFRP layers. The load and ductility capacities were evaluated for each specimen. Structural behavior comparisons of circular and rectangular section will be represented in the experimental result discussion section. Finally, ultimate load formula of CFRP strengthened CFT will be proposed to calculate the ultimate strength of CFRP strengthened circular CFT. The prediction values are in good agreement with the test results obtained in this study and in the literature.

Study on the effect of ties in the intermediate length Cold Formed Steel (CFS) columns

  • Anbarasu, M.;Kumar, S. Bharath;Sukumar, S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.323-335
    • /
    • 2013
  • This work aims to study the effect of stiffener ties in the behavior of intermediate length open section Cold-Formed Steel (CFS) Columns under axial compression. A comparative study on the behaviour and strength of Cold Formed Steel Columns by changing the direction of projection of lips (i.e., inwards or outwards) are also done. In this work two types of sections were considered Type-I section with lip projecting outwards (hat) and Type-II section with lip projecting inwards (channel). The length of the columns is predicted by performing elastic buckling analysis using CUFSM software. The theoretical analysis is performed using DSM - S100;2007, AS/NZ: 4600-2005 and IS: 801-1975. The compression tests are carried out in a 400 kN loading frame with hinged-hinged end condition. The non-linear numerical analysis is performed using Finite Element software ANSYS 12.0 to simulate the experimental results. Extensive parametric study is carried out by varying the width and spacing of the stiffener ties. The results are compared; the effects of stiffener ties on behaviour and load carrying capacity on both types of columns are discussed.

Behavior and design of perforated steel storage rack columns under axial compression

  • El Kadi, Bassel;Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • The present study is focused on the behavior and design of perforated steel storage rack columns under axial compression. These columns may exhibit different types of behavior and levels of strength owing to their peculiar features including their complex cross-section forms and perforations along the member. In the present codes of practice, the design of these columns is carried out using analytical formulas which are supported by experimental tests described in the relevant code document. Recently proposed analytical approaches are used to estimate the load carrying capacity of axially compressed steel storage rack columns. Experimental and numerical studies were carried out to verify the proposed approaches. The experimental study includes compression tests done on members of different lengths, but of the same cross-section. A comparison between the analytical and the experimental results is presented to identify the accuracy of the recently proposed analytical approaches. The proposed approach includes modifications in the Direct Strength Method to include the effects of perforations (the so-called reduced thickness approach). CUFSM and CUTWP software programs are used to calculate the elastic buckling parameters of the studied members. Results from experimental and analytical studies compared very well. This indicates the validity of the recently proposed approaches for predicting the ultimate strength of steel storage rack columns.

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

Compressive behavior of galvanized steel wire mesh (GSWM) strengthened RC short column of varying shapes

  • Marthong, Comingstarful
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • In a reinforced concrete building different shapes of column are adopted depending on the structural orientation and the architectural aspect. When there is an increase in loading due to changes in usage or revision in the design codes these columns need to be strengthened for enhanced performance during their service life. Strengthening materials such as carbon fiber and glass fiber polymer has been successfully used however, due to high cost application other alternative materials need to be explore. Galvanized steel wire mesh (GSWM) is one of the suitable materials locally available. High tensile strength, low weight, corrosion resistance, easy installation, minimum change in dimensions of the sections and cost effectives are the advantages of GSWM. Therefore, in this paper, four different shapes of column such as circular, square, rectangular and L were wrapped with different layers GSWM and jacketed with mortar. All the specimens were tested under axial compression. The objective of the study is to investigate the effectiveness of GSWM as a confining material for strengthening of column having varying shape. Test results shows that the axial strength enhanced with wrapping of GSWM jacket and a circular column presented the highest load carrying capacity and ductility as compared to the others. From the study of 22 column specimens, it is found that axial load is increased upto 20% and 19% when circular and square column are strengthened with one wrap of GSWM respectively, while a rectangular and L column required a wraps of two and three layers respectively in order to achieved the same load capacity as that of a circular column. Based on the present study, it is concluded that GSWM can be effectively used for strengthening of different shapes of concrete columns economically.