• Title/Summary/Keyword: compression axial load

Search Result 393, Processing Time 0.022 seconds

Assessing asymmetric steel angle strength under biaxial eccentric loading

  • Shu-Ti Chung;Wei-Ting Hsu
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.517-526
    • /
    • 2024
  • Due to the asymmetric cross-section of unequal-angle steel, the application of loads can induce axial rotation, leading to a series of buckling failure behaviors. Special attention must be paid during the design process. The present study aims to analyze the structural behavior of asymmetric steel angle members under various eccentric loading conditions, considering the complex biaxial bending interaction that arises when the angle steel is connected to the panel. Several key factors are investigated in this paper, including the effects of uniaxial and biaxial eccentricity on the structural behavior and the eccentric axial compression strength of long and short legs at different load application points. Potential risks associated with the specified load points, based on the AISC specifications, are also discussed. The study observed that the strength values of the members exhibited significant changes when the eccentric load deviates from the specified point. The relative position of the eccentric load point and the slenderness ratio of the member are critical influencing factors. Overall, this research intends to enhance the accuracy and reliability of strength analysis methods for asymmetric single angle steel members, providing valuable insights and guidance for a safer and more efficient design.

Load-sharing ratio analysis of reinforced concrete filled tubular steel columns

  • Xiamuxi, Alifujiang;Hasegawa, Akira
    • Steel and Composite Structures
    • /
    • v.12 no.6
    • /
    • pp.523-540
    • /
    • 2012
  • It was clear from the former researches on reinforced concrete filled tubular steel (RCFT) structures that RCFT structures have different performance than concrete filled steel tubular (CFT) structures. However, despite of that, load-sharing ratio of RCFT is evaluating by the formula and range of CFT given by JSCE. Therefore, the aim of this investigation is to study the load-sharing ratio of RCFT columns subjected to axial compressive load by performing numerical simulations of RCFT columns with the nonlinear finite element analysis (FEA) program - ADINA. To achieve this goal, firstly proper material constitutive models for concrete, steel tube and reinforcement are proposed. Then axial compression tests of concrete, RC, CFT, and RCFT columns are carried out to verify proposed material constitutive models. Finally, by the plenty of numerical analysis with small-sized and big-sized columns, load-sharing ratio of RCFT columns was studied, the evaluation formulas and range were proposed, application of the formula was demonstrated, and following conclusions were drawn: The FEA model introduced in this paper can be applied to nonlinear analysis of RCFT columns with reliable results; the load-sharing ratio evaluation formula and range of CFT should not be applied to RCFT; The lower limit for the range of load-sharing ratio of RCFT can be smaller than that of CFT; the proposed formulas for load-sharing ratio of RCFT have practical mean in design of RCFT columns.

Curved finite strip and experimental study of thin stiffened composite cylindrical shells under axial compression

  • Mojtaba Rafiee;Hossein Amoushahi;Mehrdad Hejazi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.181-197
    • /
    • 2024
  • A numerical method is presented in this paper, for buckling analysis of thin arbitrary stiffened composite cylindrical shells under axial compression. The stiffeners can be placed inside and outside of the shell. The shell and stiffeners are operated as discrete elements, and their interactions are taking place through the compatibility conditions along their intersecting lines. The governing equations of motion are obtained based on Koiter's theory and solved by utilizing the principle of the minimum potential energy. Then, the buckling load coefficient and the critical buckling load are computed by solving characteristic equations. In this formulation, the elastic and geometric stiffness matrices of a single curved strip of the shell and stiffeners can be located anywhere within the shell element and in any direction are provided. Moreover, five stiffened composite shell specimens are made and tested under axial compression loading. The reliability of the presented method is validated by comparing its numerical results with those of commercial software, experiments, and other published numerical results. In addition, by using the ANSYS code, a 3-D finite element model that takes the exact geometric arrangement and the properties of the stiffeners and the shell into consideration is built. Finally, the effects of Poisson's ratio, shell length-to-radius ratio, shell thickness, cross-sectional area, angle, eccentricity, torsional stiffness, numbers and geometric configuration of stiffeners on the buckling of stiffened composite shells with various end conditions are computed. The results gained can be used as a meaningful benchmark for researchers to validate their analytical and numerical methods.

Buckling of insulated irregular transition flue gas ducts under axial loading

  • Ramadan, H.M.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.449-458
    • /
    • 2012
  • Finite element buckling analysis of insulated transition flue ducts is carried out to determine the critical buckling load multipliers when subjected to axial compression for design process. Through this investigation, the results of numerical computations to examine the buckling strength for different possible duct shapes (cylinder, and circular-to-square) are presented. The load multipliers are determined through detailed buckling analysis taking into account the effects of geometrical construction and duct plate thickness which have great influence on the buckling load. Enhancement in the buckling capacity of such ducts by the addition of horizontal and vertical stiffeners is also investigated. Several models with varying dimensions and plate thicknesses are examined to obtain the linear buckling capacities against duct dimensions. The percentage improvement in the buckling capacity due to the addition of vertical stiffeners and horizontal Stiffeners is shown to be as high as three times for some cases. The study suggests that the best location of the horizontal stiffener is at 0.25 of duct depth from the bottom to achieve the maximum buckling capacity. A design equation estimating the buckling strength of geometrically perfect cylindrical-to-square shell is developed by using regression analysis accurately with approximately 4% errors.

Optimal Design of Panel with Trapezoidal Type Stiffeners (사다리꼴 보강재를 활용한 패널의 최적설계)

  • 원종진;이종선;윤희중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.3-8
    • /
    • 2003
  • In this study, using linear and nonlinear deformation theories and by closed-form analysis and finite difference energy methods, respectively, various buckling load factors are obtained for stiffened laminated composite panel with trapezoidal type stiffeners and various longitudinal length to radius ratios, which are made from Carbon/Epoxy USN 125 prepreg and are simply-supported on four edges under uniaxial compression, and then for them, optimal design analyses are carried out by the nonlinear search optimizer, ADS.

  • PDF

Buckling Behavior of Stiffened Laminated Composite Cylindrical Panel (보강된 복합적층 원통형패널의 좌굴거동)

  • 이종선;원종진;홍석주;윤희중
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.88-93
    • /
    • 2003
  • Buckling behavior of stiffened laminated composite cylindrical panel was studied using linear and nonlinear deformation theory. Various buckling load factors are obtained for stiffened laminated composite cylindrical panels with rectangular type longitudinal stiffeners and various longitudinal length to radius ratio, which made from Carbon/Epoxy USN150 prepreg and are simply-supported on four edges under uniaxial compression. Buckling behavior design analyses are carried out by the nonlinear search optimizer, ADS.

Experimental investigation of inelastic buckling of built-up steel columns

  • Hawileh, Rami A.;Abed, Farid;Abu-Obeidah, Adi S.;Abdalla, Jamal A.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.295-308
    • /
    • 2012
  • This paper experimentally investigated the buckling capacity of built-up steel columns mainly, Cruciform Columns (CC) and Side-to-Side (SS) columns fabricated from two Universal Beam (UB) sections. A series of nine experimental tests comprised of three UB sections, three CC sections and three SS sections with different lengths were tested to failure to measure the ultimate axial capacity of each column section. The lengths used for each category of columns were 1.8, 2.0, and 2.2 m with slenderness ratios ranging from 39-105. The measured buckling loads of the tested specimens were compared with the predicted ultimate axial capacity using Eurocode 3, AISC LRFD, and BS 5959-1. It was observed that the failure modes of the specimens included flexural buckling, local buckling and flexural-torsional buckling. The results showed that the ultimate axial capacity of the tested cruciform and side-by-side columns were higher than the code predicted design values by up to 20%, with AISC LRFD design values being the least conservative and the Eurocode 3 design values being the most conservative. This study has concluded that cruciform column and side-to-side welded flange columns using universal beam sections are efficient built-up sections that have larger ultimate axial load capacity, larger stiffness with saving in the weight of steel used compared to its equivalent universal beam counterpart.

Flexural Strength of PHC Pile Reinforced with Infilled Concrete, Transverse and Longitudinal Reinforcements (내부충전 콘크리트와 횡보강 및 축방향 철근으로 보강된 PHC 말뚝의 휨강도)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Lee, Bang-Yeon;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The pre-tensioned spun high strength concrete (PHC) pile has poor load carrying capacity in shear and flexure, while showing excellent axial load bearing capacity. The purpose of this study is to evaluate the flexural performance of the concrete-infilled composite PHC (ICP) pile which is the PHC pile reinforced with infilled concrete, transverse and longitudinal reinforcement for the improvement of shear and flexural load carrying capacity. The ICP pile specimen was designed to make allowable axial compression and bending moment higher load bearing capacity than those determined through the investigation of abutment design cases. The allowable axial compression and bending moment of the ICP pile was obtained using the program developed for calculating the axial compression - bending moment interaction. Then, ICP pile specimens were manufactured and flexural tests were performed. From the test results, it was found that the maximum bending moment of the ICP pile was approximately 45% higher than that of the PHC pile and the safety factor of ICP pile design was about 4.5 when the allowable bending moment was determined to be 25% of the flexural strength.

Evaluation on Structural Performance of Structural Insulated Panels in Wall Application (벽식 구조체 적용을 위한 구조용단열패널 성능 평가)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Lee, Cheol-Hee;Hwang, Sung-Wook;Jo, Hye-Jin;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.19-27
    • /
    • 2012
  • Structural insulated panels, which are structurally performed panels consisting of a plastic insulation bonded between two structural panel facings are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. By now, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to suggest fundamental reports such as racking resistance, axial capacity, transverse load capacity, and lintel load capacity for SIPs. Test results showed that maximum load was 44.3kN, allowable load was 14.7kN for racking resistance, and that maximum load was 137.6kN, allowable load was 37.4kN/m for axial compression capacity. For transverse load capacity, test results showed $10.3kN/m^2$ of maximum load, $3.4kN/m^2$ of allowable load. For lintel load capacity for SIPs dependent to lengths, allowable loads were 20.4kN for 600mm long lintel, 23.9kN for 1,200mm long lintel, 19.3kN for 1,800mm long lintel, and 2,400mm long lintel had 14.1kN of allowable load. In the near future, when the allowable load for wall application is established, SIPs is considered to substitute the existent post-and-lintel construction to bearing wall structure.

Experimental testing of cold-formed built-up members in pure compression

  • Biggs, Kenneth A.;Ramseyer, Chris;Ree, Suhyun;Kang, Thomas H.-K.
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1331-1351
    • /
    • 2015
  • Cold-formed built-up members are compression members that are common in multiple areas of steel construction, which include cold-formed steel joints and stud walls. These members are vulnerable to unique buckling behaviors; however, limited experimental research has been done in this area. Give this gap, experimental testing of 71 built-up members was conducted in this study. The variations of the test specimens include multiple lengths, intermediate welds, orientations, and thicknesses. The experimental testing was devised to observe the different buckling modes of the built-up C-channels and the effects of the geometrical properties; to check for applicability of multiple intermediate welding patterns; and to evaluate both the 2001 and 2007 editions of the American Iron and Steel Institute (AISI) Specification for built-up members in pure compression. The AISI-2001 and AISI-2007 were found to give inconsistent results that at times were un-conservative or overly conservative in terms of axial strength. It was also found that orientation of the member has an important impact on the maximum failure load on the member.