• Title/Summary/Keyword: compression and shear test

Search Result 476, Processing Time 0.026 seconds

The Evaluation of flexure performance of SCP modules for LNG outer tank (LNG 외조탱크 적용을 위한 SCP 모듈의 휨성능 평가)

  • Park, Jung-Jun;Park, Gi-Joon;Kim, Sung-Wook;Kim, Eon;Shin, Dongkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.447-455
    • /
    • 2019
  • When constructing LNG storage structures using the cast-in-place method in extreme areas, the construction cost and time may be increased due to the poor working environments and conditions. Therefore, demand for modular energy storage tanks is increasing. In this study, we propose using an SCP module as an alternative for lighter-weight LNG storage tanks. The purpose of this study is to evaluate the feasibility of LNG storage outer tanks by performing bending tests on the thickness of composite steel plate concrete under field conditions. The loads on specimens with thicknesses of 100 mm and 200 mm were linearly increased to the design final loads of 413 kN and 822 kN, respectively. The slope was rapidly changed, and fracture occurred. The two test conditions showed linear behavior until the steel plate yielded, and after an extreme load behavior, sudden yielding of the steel plate yield occurred in the SCP bending test according to the INCA guidelines. The results satisfied the design flexural load and showed the possibility of using the specimens in a modular LNG outer tank. However, it is necessary to evaluate the structural performance of the SCP by performing compression and shear tests in future research.

Reversed Lateral Load Tests on RC Frames Retrofitted with BRB and FRP (좌굴방지가새와 FRP로 보강된 RC골조의 반복 횡하중 실험)

  • Lee, Han-Seon;Lee, Kyung-Bo;Hwang, Seong-Jun;Cho, Chang-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.683-692
    • /
    • 2011
  • In piloti-type low-rise RC residential buildings, severe damages have been usually concentrated at piloti stories under the earthquake. In this study, a piloti story was retrofitted by installation of buckling-restrained braces (BRB's) to increase strength and stiffness of piloti story and by application of fiber reinforced polymer (FRP) sheet on columns to avoid the brittle shear and axial failure of columns. To verify this retrofit performance, reversed cyclic lateral load tests were performed on 1:5 scale bare and retrofitted frames. The test results showed that yield strength (43.2 kN) appeared to be significantly larger than design value (30 kN) due to the increase of strength in the compression side, but the stiffness value (11.6 kN/mm) turned out to be approximately one-half of the design value (24.2 kN/mm). The reasons for this difference in stiffness were due to slippage at joint between the frame and the BRB's, displacement and rotation at footing. The energy absorption capacity of the retrofitted frame was 7.5 times larger than that of the bare frame. The change of the number of load cells under the footing from 2 to 1 reduced lateral stiffness from 11.6 kN/mm to 6 kN/mm, which was only three times larger than that of the bare frame (2.1 kN/mm).

Experimental Study on the Elastic Constants of A Transversely Isotropic Rock by Multi-Specimen Compression Tests Report 1 - Focus on Data Analysis (다중시험편 시험에 의한 평면이방성 암석의 탄성상수 분석연구 제 1 보 - 자료해석을 중심으로)

  • Park, Chul-Whan;Park, Chan;Synn, Joong-Ho;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.455-464
    • /
    • 2010
  • The variations of the uniaxial compressive strength, the strains and the elastic constants with respect to the angle of anisotropy are analyzed in order to investigate the characteristics of a transversely isotropic rock experimentally. Total 35 specimens of 7 different angles from a large block of rhyolite presenting the flow structure obviously are used in tests. This study is composed of two reports; the elastic constants are mainly analyzed for the every individual angle in the report No. 1 and they will be discussed synthetically in the report No. 2. From the specimens of 0 and 90 degree, 4 independent elastic constants which can directly be obtained without the help of any other suggested equations, may be referred to the true values. Data variation in the strain measurements differs on the angle is analyzed. That of small angle specimens tends higher than that of large angle specimens. The relation of apparent Young’s modulus and angle is found to be M- or U-shaped. For small angle specimens, Saint-Venant approximation cannot be applied successfully on account of showing the non-monotonous increase, and E1 is analyzed out of the true value range. In the specimen of $\phi$ = 75, the deviation of strain measurement and strength are smallest and 4 all constants are analyzed in the true value range. Therefore, specimen of the angle of around 75 may become preferable if only one specimen should be used in test of a transversely isotropic rock.

The Shear Strength Characteristics of Weathered Granite Soil in Unsaturated State (불포화(不飽和) 화강암질풍화토(花崗岩質風化土)의 전단강도(剪斷强度) 특성(特性))

  • Cho, Seong Seup;Kang, Yea Mook;Chee, In Taeg
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.86-100
    • /
    • 1985
  • In order to investigate the strength characteristics of weathered granite soils in unsaturated state, the five physically different weathered granite soils and the common soil (sandy loam) were examined. The disturbed and the undisturbed material were prepared for triaxial compression test. The following conclusions were drawn from the study; 1. Dry density of the undisturbed soil samples was lower than maximum dry density determined from the compaction test and it showed the higher value at the well graded soil. 2. The failure strength of the samples decreased with the increase of moisture content of the soil and these results were highly pronounced at the common soil sample having a good cohesive property. 3. On weathered granite soils, the cohesion was lower measured and the internal friction angle highly, the decrease rate at internal friction angle with increase of moisture content of the soil was more significant than that of cohesion 4. The modulus of deformation of the samples decreased with increase of moisture content of the soil and these phenomena were highly pronounced at the weathered granite soils than common soil. 5. The failure strength of the samples increased with in crease of confining pressure and effect of confining pressure on failure strength was highly significant at the lower moisture content of the soil.

  • PDF

Mechanical properties and sensibility of Tencel Jacquard fabrics treated with Ginkgo biloba extract and silicon softener (은행나무추출액과 실리콘유연제를 처리한 침장용 텐셀 자카드 직물의 역학적 특성변화와 감성평가)

  • Jang, Yeon-Ju;Lee, Jung-Soon
    • Science of Emotion and Sensibility
    • /
    • v.13 no.2
    • /
    • pp.327-336
    • /
    • 2010
  • The purposes of this study are to evaluate mechanical properties and sensibility of tencel jacquard fabrics treated with ginkgo biloba extract and silicon softener, and to contribute to the research and development of the bedclothes made of the tencel jacquard fabrics. Mechanical properties and objective fabric hand evaluation were measured by using KES-FB system. Subjective sensibilities such as sensory, touch, and purchasing preference were estimated by using blind field test. The tensile properties such as EM, WT, and RT of tencel jacquard fabrics treated with ginkgo biloba extract and silicon softener showed increase. Bending properties and shear properties were decreased, but compression properties were increased compared to untreated fabric. With ginkgo biloba extract and silicon softener treatment, thickness and weight were increased. Therefore, tencel jacquard fabrics became more stretchable, softer, and bulkier than untreated fabrics. Consequently, THV of tencel jacquard fabrics treated with ginkgo biloba extract and silicon softener were increased. When fabrics were treated sequentially with ginkgo biloba extract and silicon softener, fabrics were estimated softer, more flexible, and bulkier than untreated fabrics. Also, tencel jacquard fabrics treated with ginkgo biloba extract and silicon softener were estimated to have good touch and preference.

  • PDF

Effects of using silica fume and lime in the treatment of kaolin soft clay

  • Alrubaye, Ali Jamal;Hasan, Muzamir;Fattah, Mohammed Y.
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.247-255
    • /
    • 2018
  • Soil stabilization can make the soils becoming more stable by using an admixture to the soil. Lime stabilization enhances the engineering properties of soil, which includes reducing soil plasticity, increasing optimum moisture content, decreasing maximum dry density and improving soil compaction. Silica fume is utilized as a pozzolanic material in the application of soil stabilization. Silica fume was once considered non-environmental friendly. In this paper, the materials required are kaolin grade S300, lime and silica fume. The focus of the study is on the determination of the physical properties of the soils tested and the consolidation of kaolin mixed with 6% silica fume and different percentages (3%, 5%, 7% and 9%) of lime. Consolidation test is carried out on the kaolin and the mixtures of soil-lime-silica fume to investigate the effect of lime stabilization with silica fume additives on the consolidation of the mixtures. Based on the results obtained, all soil samples are indicated as soils with medium plasticity. For mixtures with 0% to 9% of lime with 6% SF, the decrease in the maximum dry density is about 15.9% and the increase in the optimum moisture content is about 23.5%. Decreases in the coefficient of permeability of the mixtures occur if compared to the coefficient of permeability of kaolin soft clay itself reduce the compression index (Cc) more than L-SF soil mix due to pozzolanic reaction between lime and silica fume and the optimum percent of lime-silica fume was found to be (5%+6%) mix. The average coefficient of volume compressibility decreases with increasing the stabilizer content due to pozzolanic reaction happening within the soil which results in changes in the soil matrix. Lime content +6% silica fume mix can reduce the coefficient of consolidation from at 3%L+6%SF, thereafter there is an increase from 9%L+6%SF mix. The optimal percentage of lime silica fume combination is attained at 5.0% lime and 6.0% silica fume in order to improve the shear strength of kaolin soft clay. Microstructural development took place in the stabilized soil due to increase in lime content of tertiary clay stabilized with 7% lime and 4% silica fume together.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.

Effect of Stress Level on Strength Parameters of Cemented Sand (응력조건에 따른 고결모래의 강도정수 평가)

  • Lee, Moon-Joo;Choi, Sung-Kun;Choo, Hyun-Wook;Cho, Yong-Soon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.143-151
    • /
    • 2007
  • The factors affecting the geotechnical properties of cemented sands are known to be relative density, cementation level, stress level, and particle characteristics such as particle size, shape and surface conditions. It has been widely accepted that the friction angle of cemented sands is not affected by cementation while the cohesion of cemented sands was significantly influenced by cementation. The cementation that is a critical component of the strength of cemented sands will be broken with increasing confining pressure and great caution is required in evaluating the cohesion of cemented specimens due to their fragilities. In this study, a series of drained shear tests were performed with specimens at various cementation levels and confining stresses to evaluate the strength parameters of cemented sands. From the experiments, it was concluded that the cohesion intercept of cemented sand experiences three distinctive zone(cementation control zone, transition zone, and stress control zone), as the cementation level and the confining stress varies. In addition, for accurate evaluation of the strength parameters, the level of confining stress triggering the breakage of cementation bond should be determined. In this study, the relationship between the maximum confining stresses capable of maintaining the cementation bond intact and unconfined compression strength of the cemented sand was established.

Differences of Physical, Mechanical and Chemical Properties of Korean Red Pine(Pinus densiflora) Between Old and New Wood (소나무 고목재와 건전재의 물리, 기계, 화학적 특성 차이)

  • Shim, Kug-Bo;Lee, Do-Sik;Park, Byung-Soo;Cho, Sung-Taig;Kim, Kwang-Mo;Yeo, Hwan-Myeong
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • The physical, mechanical and chemical properties of old and new Korean red pine (Pinus densiflora) were analyzed. The old woods were from dismantled timbers of Bonjungsa temple. The crystallized resin in the latewood was observed by microscopic analysis. Also, reduction of specific gravity, occurrence of microscopic cleavage of tracheid was observed in the old wood. The angle of microscopic cleavage of tracheid is estimated with the same angle of micro-fibril angle of 52 layer. The bending, compression and shear strength of old world were decreased about 35-27% than those of new wood. Dynamic modulus of elasticity measured by ultrasonic nondestructive test has the tendency of reducing by the time elapse of the wood usage. Therefore, deterioration of wood could be measured by reduction of specific gravity and dynamic MOE. The static MOE and mechanical properties of old wood could be predictable by measuring dynamic MOE in the longitudinal direction. Extractives of the old wood in 1-% NaOH solution are larger quantity than new wood. Therefore the decay of the wood could be evaluated by analyzing the chemical compound, especially 1-% NaOH solution. The results of this research could be used for understanding and prediction of the changing properties with elapsing time of wood.

  • PDF

Dynamic-stability Evaluation of Unsaturated Road Embankments with Different Water Contents (함수비에 따른 불포화 도로성토의 동적 안정성 평가)

  • Lee, Chung-Won;Higo, Yosuke;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.5-21
    • /
    • 2014
  • It has been pointed out that the collapses of unsaturated road embankments caused by earthquake are attributed to high water content caused by the seepage of the underground water and/or the rainfall infiltration. Hence, it is important to study influences of water content on the dynamic stability and deformation mode of unsaturated road embankments for development of a proper design scheme including an effective reinforcement to prevent severe damage. This study demonstrates dynamic centrifugal model tests with different water contents to investigate the effect of water content on deformation and failure behaviors of unsaturated road embankments. Based on the measurement of displacement, the pore water pressure and the acceleration during dynamic loading, dynamic behavior of the unsaturated road embankments with about optimum water content and the higher water content than the optimum one have been examined. In addition, an image analysis has revealed the displacement field and the distributions of strains in the road embankment, by which deformation mode of the road embankment with higher water content has been clarified. It has been confirmed that in the case of higher water content the settlement of the crown is large mainly owing to the volume compression underneath the crown, while the small confining pressure at the toe and near the slope surface induces large shear deformation with volume expansion.