• 제목/요약/키워드: compression and shear test

검색결과 480건 처리시간 0.025초

철근콘크리트 부재의 전단강도 산정모델 (Shear Strength Estimation Model for Reinforced Concrete Members)

  • 이득행;한선진;김강수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권5호
    • /
    • pp.1-8
    • /
    • 2020
  • 이 연구에서는 철근콘크리트 부재의 전단파괴가 휨-전단 메커니즘에 지배된다는 가정을 바탕으로 인장측과 압축측에 대한 2개의 전단요구곡선들과 이에 대응되는 잠재전단강도곡선들을 각각 도출하였으며, 이를 기반으로 전단강도 산정모델을 제안하였다. 제안모델에서는 철근과 콘크리트의 부착거동을 고려하여 휨균열폭과 철근의 국부응력증가분을 산정하였다. 또한, 휨균열로부터 발전되는 지배전단균열의 생성과 균열진전거동을 이론적으로 모사하기 위하여 균열집중계수를 도입하였으며, 이를 통해 단면높이가 큰 철근콘크리트 부재에서 관측되는 크기효과를 반영하였다. 또한, 기존의 해석모델과는 다르게 전단철근과 콘크리트의 전단기여분 사이의 상호작용을 고려할 수 있는 새로운 형태의 수식을 개발하였다. 제안모델의 검증을 위하여 방대한 전단실험체들을 기존문헌으로부터 수집하였으며, 이를 통해 해석모델을 검증한 결과는 제안모델이 실험체들의 재료, 크기 및 철근의 부착특성에 관계없이 실험결과를 정확하게 평가할 수 있음을 보여주었다.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Maximum shear modulus of rigid-soft mixtures subjected to overconsolidation stress history

  • Boyoung Yoon;Hyunwook Choo
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.443-452
    • /
    • 2024
  • The use of sand-tire chip mixtures in construction industry is a sustainable and environmentally friendly approach that addresses both waste tire disposal and soil improvement needs. However, the addition of tire chip particles to natural soils decreases maximum shear modulus (Gmax), but increases compressibility, which can be potential drawbacks. This study examines the effect of overconsolidation stress history on the maximum shear modulus (Gmax) of rigid-soft mixtures with varying size ratios (SR) and tire chip contents (TC) by measuring the wave velocity through a 1-D compression test during loading and unloading. The results demonstrate that the Gmax of tested mixtures in the normally consolidated state increased with increasing SR and decreasing TC. However, the tested mixtures with a smaller SR exhibited a greater increase in Gmax during unloading because of the active pore-filling behavior of the smaller rubber particles and the consequent increased connectivity between sand particles. The SR-dependent impact of the overconsolidation stress history on Gmax was verified using the ratio between the swelling and compression indices. Most importantly, this study reveals that the excessive settlement and lower Gmax of rigid-soft mixtures can be overcome by introducing an overconsolidated state in sand-tire chip mixtures with low TC.

FRP 전단 보강 콘크리트 보의 전단강도 모델 (Shear Strength Model for FRP Shear-Reinforced Concrete Beams)

  • 최경규;강수민;심우창
    • 콘크리트학회논문집
    • /
    • 제23권2호
    • /
    • pp.185-193
    • /
    • 2011
  • 이 연구에서는 FRP 전단보강 및 무보강 콘크리트 보의 전단강도를 정확하게 평가하기 위하여 통합전단설계방법을 개발하였다. 이를 위하여, FRP의 전단강도 기여분과 콘크리트의 전단강도 기여분을 각각 정의하였다. 기존의 FRP 전단강도 평가모델과 실험 결과를 비교 분석한 결과, Triantafillou의 FRP 전단강도 평가모델이 FRP의 유효변형률과 전단강도의 추정이 우수하므로 Triantafillou의 모델을 이용하여 FRP의 전단강도 기여분을 정의하였다. 콘크리트 전단강도 기여분은 선행 연구에서 제안된 변형도 기반 전단강도모델을 이용하여 정의하였다. 콘크리트 단면의 압축대에 작용하는 압축응력과 전단응력의 상관관계를 고려하기 위하여 콘크리트 재료파괴기준을 이용하여 콘크리트 전단강도 기여분을 산정하였다. 제안한 설계방법은 기존 실험 연구 결과와 비교하여 유효성을 검증하였다. 비교 결과 제안한 설계방법은 다양한 설계변수 범위에서 FRP 전단보강 및 무보강 콘크리트 보의 전단강도를 정확하게 평가하는 것으로 나타났다.

Effect of grain size on the shear strength of unsaturated silty soils

  • Onturk, Kurban;Bol, Ertan;Ozocak, Askin;Edil, Tuncer B.
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.301-311
    • /
    • 2020
  • In this study, shear strength behavior of fine-grained soils was investigated under unsaturated conditions. The samples in the unsaturated state were subjected to a net normal stress (σ-ua) of 40 kPa and different matric suctions (ua-uw) of 50, 100 and 150 kPa. The matric suction values applied in the triaxial tests were selected according to the bubbling pressures determined from the SWC curves. The study was carried out on prepared re-constituted cylindrical samples by uniaxial consolidation of soil slurries. First, consolidated drained (CD) triaxial compression tests were performed on the saturated samples and the cohesion and angle of internal friction were determined. After that, drained triaxial compression tests under matric suctions were performed on the unsaturated samples. In order to obtain unsaturated test results, cohesion and internal friction angle values of saturated samples were used. The nonlinear surface representing the shear strength surface was approximated consisting of two planes (double planar surface). The reason for the nonlinear behavior of some soils is that the amount of sand content contained in it is relatively high and the bubbling pressure/permanent water content value is relatively low.

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.

1축 및 2축 압축을 받는 고강도콘크리트 및 강섬유보강 고강도콘크리트의 거동 (Behavior of Plain and Steel Fiber Reinforced High Strengh Concrete Under Uniaxial and Biaxial Compression)

  • 임동환;박성환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.5-8
    • /
    • 2005
  • The purpose of this study is to investigate the mechanical characteristics of plain and steel fiber high strength concrete under uniaxial and biaxial loading condition. A number of plain and steel fiber high strength concrete cubes having 28 days compressive strength of 82.7Mpa (12,000psi) were made and tested. Four principal compression stress ratios, and four fiber concentrations were selected as major test variables. From test results, it is shown that confinement stress in minor stress direction has pronounced effect on the strength and deformational behavior. Both of the stiffness and ultimate strength of the plain and fiber high strength concrete increased. The maximum increase of ultimate strength occurred at biaxial stress ratio of 0.5 in the plain high strength concrete and the value were recorded 30 percent over than the strength under uniaxial condition. The failure modes of plain high strength concrete under uniaxial compression were shown as splitting type of failure but steel fiber concrete specimens under biaxial condition showed shear type failure.

  • PDF

$K_0$ 압밀 점토의 변형율 의존 비배수 전단거동 (Undrained Behavior of $K_0$ Consolidated Clay due to Strain Rate)

  • 김진원;이창호;이문주;이우진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1039-1046
    • /
    • 2005
  • After clay particles have been sediment isotropically, the clay deposits have been consolidated under $K_0$-stress system. Therefore, in order to predict the behavior in-situ of normally consolidated clays, the laboratory test should be enforced under $K_0$-stress system and should obtain the characteristics of normally consolidated clays. And relationship of stress-strain on clay is effected on not only method of consolidation but also characteristic of visco-plastic behavior. Saturated clay is effected more this trend. So, rate of strain is considered to understand exact stress-strain relationship. In this study, the series of undrained triaxial compression tests were preformed on remolded specimens which was made by slurry of clay, consolidated under $K_0$-stress systems. And the undrained triaxial compression test were preformed to examine behavior of stress-strain relationship due to rate of shear strain relationship due to rate of shear strain.

  • PDF

다양한 열-수리-역학적 조건 하에서 불연속면 전단 거동 특성에 관한 실험적 연구 (A Study on Shear Characteristics of a Rock Discontinuity under Various Thermal, Hydraulic and Mechanical Conditions)

  • 김태현;전석원
    • 터널과지하공간
    • /
    • 제26권2호
    • /
    • pp.68-86
    • /
    • 2016
  • 암반 구조물의 안정성을 분석하기 위해서는 암반 내 존재하는 불연속면의 전단거동 특성을 파악하는 것이 필수적이다. 특히 심부 지하에서의 암석 불연속면 마찰 거동 특성은 역학적, 수리적, 열적 및 화학적 조건과 각각의 조건들의 상호작용에 의해 영향을 받게 된다. 본 연구에서는 다양한 열-수리-역학적 조건에서 불연속면의 전단 거동 특성을 파악하기 위해 매끈한 화강암 불연속면 시험편과 거칠기를 포함한 유사암석 불연속면 시험편을 대상으로 삼축압축장비를 이용한 전단실험을 수행하였다. Coulomb의 전단강도 예측식을 이용하여 실험결과를 분석한 바 화강암 시험편의 경우 실험 조건의 변화에 따라 마찰 거동에 큰 변화를 보이지 않았으나 유사암석 시험편의 경우 응력 수준에 따라 변화를 보였다. 실험 조건의 변화에 따른 강성 및 팽창각의 변화를 분석한 결과 온도 및 수압 조건의 변화에 따라서 크게 변화하지 않음을 알 수 있었다.

불교란 풍화잔적토의 직접전단시험 (Direct Shear Test of Undisturbed Weathered Residual Soils)

  • 오세붕;이영휘;정종혁
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.423-430
    • /
    • 1999
  • A weathered residual soil is a soil-like material derived from the in situ weathering and decomposition of rock which has not been transported from its original location. Undisturbed sampling of residual soils is extremely difficult, which has an important effect on investigating the strength and compression characteristics. Thus, a special undisturbed sampling device (direct shear box with shoe) was developed and undisturbed samples were successfully obtained for direct shear tests, Direct shear testing was conducted under unsoaked and soaked condition. As a result, the shear strength of soaked samples was less than that of unsoaked samples, and it was verified that direct shearing of undisturbed samples can evaluate reasonably the shear strength and the slope stability.

  • PDF