• Title/Summary/Keyword: compressible

Search Result 1,152, Processing Time 0.027 seconds

A Study on Anisotropic Compression Behavior of Illite (일라이트의 비등방적 압축특성 연구)

  • Yun, Seohee;Lee, Yongjae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • High-pressure synchrotron X-ray powder diffraction experiments were performed on natural illite (K0.65Al2(Al0.65Si3.35)O10(OH)2) using diamond anvil cell (DAC) under two different pressure transmitting media (PTM), i.e., water and ME41 (methanol:ethanol = 4:1 by volume). When using water as PTM, occasional heating was applied up to about 250℃ while reaching pressure up to 2.7 GPa in order to promote both hydrostatic conditions and intercalation of water molecules into the layer. When using ME41, pressure was reached up to 6.9 GPa at room temperature. Under these conditions, illite did not show any expansion of interlayer distance or phase transitions. Pressure-volume data were used to derive bulk moduli (K0) of 45(3) GPa under water and 51(3) GPa under ME41 PTM. indicating no difference in compressibility within the analytical error. Linear compressibilities were then calculated to be βa = 0.0025, βb = 0.0029, βc = 0.0144 under ME41 PTM showing the c-axis is ca. six times more compressible than a- and b-axes. These elastic behaviors of illite were compared to muscovite, one of its structural analogues.

Robust Design for Showerhead Thermal Deformation

  • Gong, Dae-Wi;Kim, Ho-Jun;Lee, Seung-Mu;Won, Je-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.150.1-150.1
    • /
    • 2014
  • Showerhead is used as a main part in the semiconductor equipment. The face plate flatness should remain constant and the cleaning performance must be gained to keep the uniformity level of etching or deposition in chemical vapor deposition process. High operating temperature or long period of thermal loading could lead the showerhead to be deformed thermally. In some case, the thermal deformation appears very sensitive to showerhead performance. This paper describes the methods for robust design using computational fluid dynamics. To reveal the influence of the post distribution on flow pattern in the showerhead cavity, numerical simulation was performed for several post distributions. The flow structure appears similar to an impinging flow near a centered baffle in showerhead cavity. We took the structure as an index to estimate diffusion path. A robust design to reduce the thermal deformation of showerhead can be achieved using post number increase without ill effect on flow. To prevent the showerhead deformation by heat loading, its face plate thickness was determined additionally using numerical simulation. The face plate has thousands of impinging holes. The design key is to keep pressure drop distribution on the showerhead face plate with the holes. This study reads the methodology to apply to a showerhead hole design. A Hagen-Poiseuille equation gives the pressure drop in a fluid flowing through such hole. The assumptions of the equation are the fluid is viscous-incompressible and the flow is laminar fully developed in a through hole. An equation can be expressed with radius R and length L related to the volume flow rate Q from the Hagen-Poiseuille equation, $Q={\pi}R4{\Delta}p/8{\mu}L$, where ${\mu}$ is the viscosity and ${\Delta}p$ is the pressure drop. In present case, each hole has steps at both the inlet and the outlet, and the fluid appears compressible. So we simplify the equation as $Q=C(R,L){\Delta}p$. A series of performance curves for a through hole with geometric parameters were obtained using two-dimensional numerical simulation. We obtained a relation between the hole diameter and hole length from the test cases to determine hole diameter at fixed hole length. A numerical simulation has been performed as a tool for enhancing showerhead robust design from flow structure. Geometric parameters for the design were post distribution and face plate thickness. The reinforced showerhead has been installed and its effective deposition profile is being shown in factory.

  • PDF

An Analytical Solution of Dynamic Responses for Seabed under Coexisting Fields of Flow and Partial Standing Wave with Arbitrary Reflection Ratio (흐름과 임의반사율을 갖는 부분중복파와의 공존장하에서 해저지반내 동적응답의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kang, Gi-Chun;Kim, Do-Sam;Kim, Tae-Hyung;Na, Seung-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.27-44
    • /
    • 2015
  • An analytical solution of dynamic responses for seabed in finite and infinite thicknesses including shallow has been developed under flow and partial standing wave with arbitrary reflection ration coexisting field at a constant water depth condition. In the analytical solution, a field was simply transited to a coexisting field of progressive wave and flow when reflection ratio was 0 and to a coexisting field of fully standing wave and flow when reflection ratio was 1. Based on the Biot's consolidation theory, the seabed was assumed as a porous elastic media with the assumptions that pore fluid is compressible and Darcy law governs the flow. The developed analytical solution was compared with the existing results and was verified. Using the analytical solution the deformation, pore pressure, effective and shear stresses were examined under various given values of reflection ratio, flow velocity, incident wave's period and seabed thickness. From this study, it was confirmed that the dynamic response of seabed was quite different depending on consideration of flow, which causes changing period and length of incident and reflection waves. It was also confirmed that dynamic response significantly depends on the magnitude of reflection ratio.

An Analytical Solution of Dynamic Responses for Seabed under Flow and Standing Wave Coexisting Fields (흐름과 완전중복파와의 공존장하에서 해저지반내 동적응답의 해석해)

  • Lee, Kwang-Ho;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung;Kim, Kyu-Han;Jeon, Jong-Hyeok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.118-134
    • /
    • 2015
  • An analytical solution of dynamic responses for seabed in shallow, finite and infinite thicknesses has been developed under flow and standing wave coexisting field at a constant water depth condition. To do this, based on the Biot's consolidation theory, the seabed is assumed as a porous elastic media with the assumptions that pore fluid is compressible and Darcy law governs the flow. The developed analytical solution is compared with the previous results and is verified. Using the analytical solution the deformation, pore pressure, effective and shear stresses of seabed are examined under various given values of flow velocity, incident wave period and seabed thickness. From this study, it is confirmed that the seabed response is quite different depending on consideration of flow, which causes changing period and length of incident and reflection waves.

Investigation of Membrane Fouling in Microfiltration by Characterization of Flocculent Aggregates (응집플록의 특성분석을 통하여 관찰된 정밀여과 막오염 현상에 관한 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.337-344
    • /
    • 2006
  • Characteristics of flocculent aggregates have great effects on membrane fouling. Floc from kaolin particles gave higher permeate throughputs than floc from natural particles at the same conditions. Therefore, the objectives of this study are to thoroughly analyze characteristics of flocculated aggregates and to investigate effects of flocculated aggregates on membrane fouling. Image analysis, specific rake resistance and cake compressibility were used for characterization of flocs. Different flocculent aggregates formed with natural and kaolin particles were employed in this study. The fractal dimensions from the image analysis were $D_2=1.79{\pm}0.07$ for floc from natural particles and $D_2=1.84{\pm}0.06$ for floc from kaolin particles. The lower fractal dimension($D_2$) of floc from natural particles indicated that the aggregates were more porous and less compact than floe from kaolin particles. In addition, both the specific cake resistances and compressible degrees of flocs from natural particles showed greater values than those of flocs from kaolin particles. The results implied that the porous and loose flocs from natural particles were more easily compressed on membrane surface than the dense and compact flocs from kaolin particles. The compressed flocs yielded the great hydraulic resistances by hindering the water flow through the cake layer.

Analysis of Unstable Shock-Induced Combustion over Wedges and Conical Bodies (쐐기 및 원추 주위의 불안정한 충격파 유도연소 해석)

  • Jeong-Yeol Choi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.32-33
    • /
    • 2003
  • Mechanism of a periodic oscillation of shock-induced combustion over a two- dimensional wedges and axi-symmetric cones were investigated through a series of numerical simulations at off-attaching condition of oblique detonation waves(ODW). A same computational domain over 40 degree half-angle was considered for two-dimensional and axi-symmetric shock-induced combustion phenomena. For two-dimensional shock-induced combustion, a 2H2+02+17N2 mixture was considered at Mach number was 5.85with initial temperature 292 K and initial pressureof 12 KPa. The Rankine-Hugoniot relation has solution of attached waves at this condition. For axi-symmetric shock-induced combustion, a H2+2O2+2Ar mixture was considered at Mach number was 5.0 with initial temperature 288 K and initial pressure of 200 mmHg. The flow conditions were based on the conditions of similar experiments and numerical studies.[1, 3]Numerical simulation was carried out with a compressible fluid dynamics code with a detailed hydrogen-oxygen combustion mechanism.[4, 5] A series of calculations were carried out by changing the fluid dynamic time scale. The length wedge is varied as a simplest way of changing the fluid dynamic time scale. Result reveals that there is a chemical kinetic limit of the detached overdriven detonation wave, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. At the off-attaching condition of ODW the shock and reaction waves still attach at a wedge as a periodically oscillating oblique shock-induced combustion, if the Rankine-Hugoniot limit of detachment isbut the chemical kinetic limit is not.Mechanism of the periodic oscillation is considered as interactions between shock and reaction waves coupled with chemical kinetic effects. There were various regimes of the periodicmotion depending on the fluid dynamic time scales. The difference between the two-dimensional and axi-symmetric simulations were distinct because the flow path is parallel and uniform behind the oblique shock waves, but is not behind the conical shock waves. The shock-induced combustion behind the conical shockwaves showed much more violent and irregular characteristics.From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Suggestion of Modified Compression Index for secondary consolidation using by Nonlinear Elasto Viscoplastic Models (비선형 점탄소성 모델을 이용한 2차압밀이 포함된 수정압축지수개발)

  • Choi, Bu-Sung;Im, Jong-Chul;Kwon, Jung-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1115-1123
    • /
    • 2008
  • When constructing projects such as road embankments, bridge approaches, dikes or buildings on soft, compressible soils, significant settlements may occur due to the consolidation of these soils under the superimposed loads. The compressibility of the soil skeleton of a soft clay is influenced by such factors as structure and fabric, stress path, temperature and loading rate. Although it is possible to determine appropriate relations and the corresponding material parameters in the laboratory, it is well known that sample disturbance due to stress release, temperature change and moisture content change can have a profound effect on the compressibility of a clay. The early research of Tezaghi and Casagrande has had a lasting influence on our interpretation of consolidation data. The 24 hour, incremental load, oedometer test has become, more or less, the standard procedure for determining the one-dimensional, stress-strain behavior of clays. An important notion relates to the interpretation of the data is the ore-consolidation pressure ${\sigma}_p$, which is located approximately at the break in the slope on the curve. From a practical point of view, this pressure is usually viewed as corresponding to the maximum past effective stress supported by the soil. Researchers have shown, however, that the value of ${\sigma}_p$ depends on the test procedure. furthermore, owing to sampling disturbance, the results of the laboratory consolidation test must be corrected to better capture the in-situ compressibility characteristics. The corrections apply, strictly speaking, to soils where the relation between strain and effective stress is time independent. An important assumption in Terzaghi's one-dimensional theory of consolidation is that the soil skeleton behaves elastically. On the other hand, Buisman recognized that creep deformations in settlement analysis can be important. this has led to extensions to Terzaghi's theory by various investigators, including the applicant and coworkers. The main object of this study is to suggestion the modified compression index value to predict settlements by back calculating the $C_c$ from different numerical models, which are giving best prediction settlements for multi layers including very thick soft clay.

  • PDF

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF

Numerical Analysis of Dynamic Response of Floating Offshore Wind Turbine to the Underwater Explosion using the PML Non-reflecting Technique (PML 무반사 기법을 이용한 부유식 해상풍력발전기의 수중폭발에 따른 동응답 수치해석)

  • Cho, Jin-Rae;Jeon, Soo-Hong;Jeong, Weui-Bong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.521-527
    • /
    • 2016
  • This paper is concerned with the numerical analysis of dynamic response of floating offshore wind turbine subject to underwater explosion using an effective non-reflecting technique. An infinite sea water domain was truncated into a finite domain, and the non-reflecting technique called the perfectly matched layer(PML) was applied to the boundary of truncated finite domain to absorb the inherent reflection of out-going impact wave at the boundary. The generalized transport equations that govern the inviscid compressible water flow was split into three PML equations by introducing the direction-wise absorption coefficients and state variables. The fluid-structure interaction problem that is composed of the wind turbine and the sea water flow was solved by the iterative coupled Eulerian FVM and Largangian FEM. And, the explosion-induced hydrodynamic pressure was calculated by JWL(Jones-Wilkins-Lee) equation of state. Through the numerical experiment, the hydrodynamic pressure and the structural dynamic response were investigated. It has been confirmed that the case using PML technique provides more reliable numerical results than the case without using PML technique.

CYSTIC HYGROMA IN LEFT SUBMANDIBULAR AREA;REPORT OF A CASE (하악 우각부 및 악하부에 발생한 경부수활액낭종)

  • Lee, Hee-Cheul;Yoon, Kyu-Ho;Rho, Young-Seo;Park, Seong-Won;Shin, Myoung-Sang;Jeon, In-Seong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.2
    • /
    • pp.171-178
    • /
    • 1994
  • Cystic hygroma remains a complex entity in terms of its development and management. Most recently, cystic hygroma has been categorized as part of a larger spectrum that include lymphangioma. The majorities of lymhangioma occur in the head and neck as cystic hygromas with the posterior cervical region as the most common site. Cystic hygromas usually present in infancy or early childhood as compressible masses that may rapidly and intermittently enlarge. While they may arise in any anatomic location, hygromas of the head and neck are especially difficult and speech pathology. Since as airway obstruction, feeding difficulties, and speech pathology. Since its original description, there have been many attepmts at treatment modalities : surgical excision remains the treatment of choice. Complete extirpation of these lesions is often impossible, and recurrence rates are accordingly high. This is report of a case bout 5-year-old female patient with cystic hygroma, resulted in facial asymmetry and swallowing difficulty, in left submandibular area. We obtained the successful functional and esthetic results by simple surgical excision of tumor mass. Therefore, we represents the case with literatural reviews.

  • PDF