• Title/Summary/Keyword: compound particle

Search Result 190, Processing Time 0.024 seconds

Physical Characteristics of Sterically Stabilized Liposomes after Lyophilization and Rehydration (입체 구조적으로 안정화된 리포좀의 동결건조에 따른 물리적 특성)

  • Jeon, Ho-Seong;Lee, Sang-Kil;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.43-47
    • /
    • 2001
  • Sterically stabilized liposomes (SSL) have been introduced for longer circulation in blood than conventional liposomes (CL). However, there are a couple of problems in SSL preparation due to the instability of phospholipid and the degradation of drug in aqueous conditions. To solve these problems, it is necessary to go through lyophilization process. Therefore, in this study, effects of lyophilization on SSL were evaluated for physical characteristics changes upon rehydration of lyophilized SSL such as the particle size, efficiency of drug entrapment, turbidity and drug release. SSL containing streptozocin, a water-soluble anticancer drug as a model compound, were prepared with DSPC and DSPE-PEG 2000. The size was controlled to 100 nm by extrusion with polycarbonate membrane, and sucrose was used as a cryoprotectant for lyophilization at the 1:3 (lipid:sucrose) ratio. Upon rehydration of lyophilized SSL, the average size was in the range of $50{\sim}200\;nm$ which is adequate for longer circulation in blood, and the encapsulation efficiency was kept as its initial state. Rehydrated SSL were not adsorbed to rat plasma protein and revealed a similar drug release profile to that of fresh SSL before lyophilization. Therefore, lyophilization could be introduced efficiently to overcome aqueous instability problems of SSL.

  • PDF

The Characterization of Nano-Nickel Catalyst with High Activity by Mechanochemical (MC) Method I. Microstructure of MA Ni-50wt% Al and Preparation of Nano-Ni (기계.화학적 방법으로 제조된 고활성 나노-니켈 촉매의 특성 I. MA된 Ni-50wt% Al 합금의 미세구조 및 나노 촉매 제조)

  • Lee, Chang-Rae;Choe, Jae-Ung;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.615-621
    • /
    • 1999
  • The new process in order to fabricate of Ni catalyst with high activity by the mechanochemical(MC) method which was combined the mechanical alloying(MA) and the chemical treatment process. The microstructure and characterization of mechanically alloyed Ni-5-wt% Al powder and Ni catalyst gained by alkali leaching were investigated byt he various analysis such as XRD, SEM-EDS, HRTEM and laser particle analyzer. The steady state powder with 1~2$\mu\textrm{m}$ mean particle size was obtained after 30hr milling with the PCA of 2 wt% stearic acid under the condition of grinding stainless steel ball to powder ratio of 60:1 and rotating speed fo 300rpm. According to result of HRTEM diffraction pattern, MA powder of the steady state was nanocrystalline $Al_3$$Ni_2$ intermetallic compound. Ni catalyst was obtained after KOH leaching of the steady state powder was about 20nm nanocrystalline which contained about 8 wt % Al.

  • PDF

Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines

  • Stefaniak, A.B.;Johnson, A.R.;du Preez, S.;Hammond, D.R.;Wells, J.R.;Ham, J.E.;LeBouf, R.F.;Martin, S.B. Jr.;Duling, M.G.;Bowers, L.N.;Knepp, A.K.;de Beer, D.J.;du Plessis, J.L.
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.229-236
    • /
    • 2019
  • Background: Emerging reports suggest the potential for adverse health effects from exposure to emissions from some additive manufacturing (AM) processes. There is a paucity of real-world data on emissions from AM machines in industrial workplaces and personal exposures among AM operators. Methods: Airborne particle and organic chemical emissions and personal exposures were characterized using real-time and time-integrated sampling techniques in four manufacturing facilities using industrial-scale material extrusion and material jetting AM processes. Results: Using a condensation nuclei counter, number-based particle emission rates (ERs) (number/min) from material extrusion AM machines ranged from $4.1{\times}10^{10}$ (Ultem filament) to $2.2{\times}10^{11}$ [acrylonitrile butadiene styrene and polycarbonate filaments). For these same machines, total volatile organic compound ERs (${\mu}g/min$) ranged from $1.9{\times}10^4$ (acrylonitrile butadiene styrene and polycarbonate) to $9.4{\times}10^4$ (Ultem). For the material jetting machines, the number-based particle ER was higher when the lid was open ($2.3{\times}10^{10}number/min$) than when the lid was closed ($1.5-5.5{\times}10^9number/min$); total volatile organic compound ERs were similar regardless of the lid position. Low levels of acetone, benzene, toluene, and m,p-xylene were common to both AM processes. Carbonyl compounds were detected; however, none were specifically attributed to the AM processes. Personal exposures to metals (aluminum and iron) and eight volatile organic compounds were all below National Institute for Occupational Safety and Health (NIOSH)-recommended exposure levels. Conclusion: Industrial-scale AM machines using thermoplastics and resins released particles and organic vapors into workplace air. More research is needed to understand factors influencing real-world industrial-scale AM process emissions and exposures.

Fabrication of Compound K-loaded Polymeric Micelle System and its Characterization in vitro and Oral Absorption Enhancement in vivo

  • Hong, Sun-Mi;Jeon, Sang-Ok;Seo, Jo-Eun;Chun, Kyeung-Hwa;Oh, Dong-Ho;Choi, Young Wook;Lee, Do Ik;Jeong, Seong Hoon;Kang, Jae Seon;Lee, Sangkil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3188-3194
    • /
    • 2014
  • Compound K (CK) was formulated as polymeric micelles (PM) using Pluronic$^{(R)}$ F-127 to enhance the oral absorption of CK, an intestinal bacterial metabolite of ginseng protopanaxadiol saponin. The physicochemical properties of Ck-loaded PM were characterized and an in vitro transport study using the Caco-2 cell system as well as an in vivo pharmacokinetic study using SD rats was carried out. The hydrodynamic mean particle size of CK-loaded PM (CK-PM) was $254{\pm}23.45nm$ after rehydration and the drug loading efficiency was ca. 99.9%. The FT-IR spectroscopy, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy data supported the presence of a new solid phase in the PM. The $P_{app}$ value of in vitro Caco-2 cell permeation of CK-PM and the oral absorption of CK was enhanced about 1.2-fold and 2.6-fold compared to CK suspension, respectively, showing that the present PM formulation enabled an enhancement of oral CK absorption.

Korean Base-Noun Extraction and its Application (한국어 기준명사 추출 및 그 응용)

  • Kim, Jae-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.613-620
    • /
    • 2008
  • Noun extraction plays an important part in the fields of information retrieval, text summarization, and so on. In this paper, we present a Korean base-noun extraction system and apply it to text summarization to deal with a huge amount of text effectively. The base-noun is an atomic noun but not a compound noun and we use tow techniques, filtering and segmenting. The filtering technique is used for removing non-nominal words from text before extracting base-nouns and the segmenting technique is employed for separating a particle from a nominal and for dividing a compound noun into base-nouns. We have shown that both of the recall and the precision of the proposed system are about 89% on the average under experimental conditions of ETRI corpus. The proposed system has applied to Korean text summarization system and is shown satisfactory results.

Eco-friend Synthesis of Isoindoline Yellow Compound and its Properties (Isoindoline계 황색 화합물의 환경친화적 합성 및 이의 특성)

  • Kim, Song Hyuk;Kim, Jae Hwan;Yang, Seok Won;Lee, Won-Ki;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.74-79
    • /
    • 2015
  • In this study, to obtain isoindoline compounds with the high thermal resistance and reddish yellow color using an environmental friendly method without the use of any surfactants, isoindoline derivatives with different structures were added at various reaction temperatures for the synthesis and the product was then crystallized by controlling temperatures and times in autoclave. Chemical structures, particle sizes, color differences, and optical properties were evaluated by the means of FT-IR, FE-SEM, UV-Vis spectroscopy, PSA (particle size analyzer) and Zeta potential analyzer. The samples with an enhanced dispersibility, highly thermal resistance, uniform particle sizes were achieved possibly due to the addition of isoindoline derivatives into the crystallization processing mixtures. The color change trend was also observed depending upon synthesis conditions.

Study on Heat-shield Property of Surface-treated Inorganic Oxide Particles (표면처리된 무기산화물 입자의 열차단 특성에 관한 연구)

  • Kim, Dong Ho;Kim, Gu Ni
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.28-35
    • /
    • 2013
  • In this study, we produced heat-shield coating materials using surface-treated Ga-doped ZnO (GZO) and investigated the dispersity of particle, visible light transmittance, ultraviolet light cut off, infrared light cut-off, heat-shielding property by surface-treating compounds and treatment conditions. In the case of using IPA or acryl binder for heat-shield coating, the dispersity of inorganic oxide particles was poor but in the case of using surface-treated inorganic oxide particles by hybrid compound having urethane (urea) group, acryl group and silica, dispersity of particle, visible light transmittance and haze were improved. We used the measurement kit and sunlamp for measuring heat-shielding property and confirmed that the internal temperature of the measurement kit using heat-shield film was lower more than $4.8^{\circ}C$ in comparison with using PET film for itself.

Influence of Crystal Structure on the Chemical Bonding Nature and Photocatalytic Activity of Hexagonal and Cubic Perovskite Compounds

  • Lee, Sun-Hee;Kim, In-Young;Kim, Tae-Woo;Hwang, Seong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.817-821
    • /
    • 2008
  • We have investigated the influence of the crystal structure on the chemical bonding nature and photocatalytic activity of cubic and hexagonal perovskite A[$Cr_{1/2}Ta_{1/2}$]O3 (A = Sr, Ba) compounds. According to neutron diffraction and field emission-scanning electron microscopy, the crystal structure and particle size of these compounds are strongly dependent on the nature of A-site cations. Also, it was found that the face-shared octahedra in the hexagonal phase are exclusively occupied by chromium ions, suggesting the presence of metallic (Cr-Cr) bonds. X-ray absorption and diffuse UV-vis spectroscopic analyses clearly demonstrated that, in comparison with cubic Sr[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase, hexagonal Ba[$Cr_{1/2}Ta_{1/2}$]$O_3$ phase shows a decrease of Cr oxidation state as well as remarkable changes in interband Cr d-d transitions, which can be interpreted as a result of metallic (Cr-Cr) interactions. According to the test of photocatalytic activity, the present semiconducting materials have a distinct activity against the photodegradation of 4-chlorophenol. Also the Srbased compound was found to show a higher photocatalytic activity than the Ba-based one, which is attributable to its smaller particle size and its stronger absorption in visible light region.

The Effects of Substituted $Co^{+2}$ and $Ti^{+4}$ Cations on Magnetic Properties and Particle Characteristics of Ba-Ferrite Powder for Use in High Density Magnetic Recording (고밀도 자기기록용 Ba-Ferrite 분말의 자기적 물성과 입자특성에 미치는 $Co^{+2}$$Ti^{+4}$의 효과)

  • 홍양기;박상준;정홍식
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.275-280
    • /
    • 1995
  • The sites for $Fe^{+3}$ are partly substituted by $Co^{+2}$ and $Ti^{+4}$ cations to control coercivity of Ba-ferrite particles for use in high density magnetic recording. The substituted $Co^{+2}$ cation has very much different effects on magnetic properties and particle characteristics from that $Ti^{+4}$ cation has. The decrease in the coercivity with the $Co^{+2}$ substitution is attributed to the formation of excessive spinel-block(S-block) in pure Ba-ferrite crystal, while saturation magnetization is increased and the distributions of coercivity and particle size become broad. The substitution with the $Ti^{+4}$ decreases the sauration magnetization, but has less effect on a change in coercivity than the $Co^{+2}$. The $Ti^{+4}$ acts as a nucleation agent in amorphous phase of formulated compound, and consequently particle size and aspect ratio are decreased. Furthermore, the enhancement of substitution of the $Co^{+2}$ for the $Fe^{+3}$ sites in rhombohedral-block(R-block) by the $Ti^{+4}$ retards the nucleation of spinel phase of Ba-ferrite, which results in uniform magnetic properties of Ba-ferrite particles. It is suggested that the contents of the cations to be substituted for the $Fe^{+3}$ sites are optimized on the bases of magnetic properties and particle characteristics rather than on the base of electrical charge balance.

  • PDF

Preparation of Al-SiCp Composite Coating by Plasma Thermal Spray (플라즈마 용사에 의한 Al-SiCp 복합재료 코팅층의 제조)

  • 민준원;유승을;김영정;김정석;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.460-467
    • /
    • 2003
  • Al-SiC$_{p}$ composite layer was prepared by plasma thermal spray on aluminum substrate using composite powder prepared by mechanical alloying. Mechanically alloyed powder was achieved after 24 h milling, which was used for thermal spray coating. The correlations between process conditions and thickness/porosity were analyzed, and increase of hardness was confirmed. The presence of Al-Si-C-O compound was detected by TEM analysis.