• Title/Summary/Keyword: compound Poisson

Search Result 42, Processing Time 0.017 seconds

The recombination velocity at III-V compound heterojunctions with applications to Al/$_x$/Ga/$_1-x$/As-GaAs/$_1-y$/Sb/$_y$/ solar cells

  • 김정순
    • 전기의세계
    • /
    • v.28 no.4
    • /
    • pp.53-63
    • /
    • 1979
  • Interface recombination velocity in $Al_{x}$G $a_{1-x}$ As-GaAs and $Al_{0.85}$, G $a_{0.15}$ As-GaA $s_{1-y}$S $b_{y}$ heterojunction systems is studied as a function of lattice mismatch. The results are applied to the design of highly efficient III-V heterojunction solar cells. A horizontal liquid-phase epitaxial growth system was used to prepare p-p-p and p-p-n $Al_{x}$G $a_{1-x}$ As-GaA $s_{1-y}$S $b_{y}$-A $l_{x}$G $a_{1-x}$ As double heterojunction test samples with specified values of x and y. Samples were grown at each composition, with different GaAs and GaAs Sb layer thicknesses. A method was developed to obtain the lattice mismatch and lattice constants in mixed single crystals grown on (100) and (111)B oriented GaAs substrates. In the AlGaAs system, elastic lattice deformation with effective Poisson ratios .mu.$_{eff}$ (100=0.312 and .mu.$_{eff}$ (111B) =0.190 was observed. The lattice constant $a_{0}$ (A $l_{x}$G $a_{1-x}$ As)=5.6532+0.0084x.angs. was obtained at 300K which is in good Agreement with Vegard's law. In the GaAsSb system, although elastic lattice deformation was observed in (111) B-oriented crystals, misfit dislocations reduced the Poisson ratio to zero in (100)-oriented samples. When $a_{0}$ (GaSb)=6.0959 .angs. was assumed at 300K, both (100) and (111)B oriented GaAsSb layers deviated only slightly from Vegard's law. Both (100) and (111)B zero-mismatch $Al_{0.85}$ G $a_{0.15}$As-GaA $s_{1-y}$S $b_{y}$ layers were grown from melts with a weight ratio of $W_{sb}$ / $W_{Ga}$ =0.13 and a growth temperature of 840 to 820 .deg.C. The corresponding Sb compositions were y=0.015 and 0.024 on (100) and (111)B orientations, respectively. This occurs because of a fortuitous in the Sb distribution coefficient with orientation. Interface recombination velocity was estimated from the dependence of the effective minority carrier lifetime on double-heterojunction spacing, using either optical phase-shift or electroluminescence timedecay techniques. The recombination velocity at a (100) interface was reduced from (2 to 3)*10$^{4}$ for y=0 to (6 to 7)*10$^{3}$ cm/sec for lattice-matched $Al_{0.85}$G $a_{0.15}$As-GaA $s_{0.985}$S $b_{0.015}$ Although this reduction is slightly less than that expected from the exponential relationship between interface recombination velocity and lattice mismatch as found in the AlGaAs-GaAs system, solar cells constructed from such a combination of materials should have an excellent spectral response to photons with energies over the full range from 1.4 to 2.6 eV. Similar measurements on a (111) B oriented lattice-matched heterojunction produced some-what larger interface recombination velocities.ities.ities.s.

  • PDF

Estimation of Time-dependent Damage Paths of Armors of Rubble-mound Breakwaters using Stochastic Processes (추계학적 확률과정을 이용한 경사제 피복재의 시간에 따른 피해 경로 추정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.246-257
    • /
    • 2015
  • The progressive degradation paths of structures have quantitatively been tracked by using stochastic processes, such as Wiener process, gamma process and compound Poisson process, in order to consider both the sampling uncertainty due to the usual lack of damage data and the temporal uncertainty associated with the deterioration evolution. Several important features of stochastic processes which should carefully be considered in application of the stochastic processes to practical problems have been figured out through assessing cumulative damage and lifetime distribution as a function of time. Especially, the Wiener process and the gamma process have straightforwardly been applied to armors of rubble-mound breakwaters by the aid of a sample path method based on Melby's formula which can estimate cumulative damage levels of armors over time. The sample path method have been developed to calibrate the related-parameters required in the stochastic modelling of armors of rubble-mound breakwaters. From the analyses, it is found that cumulative damage levels of armors have surely been saturated with time. Also, the exponent of power law in time, that plays a significant role in predicting the cumulative damage levels over time, can easily be determined, which makes the stochastic models possible to track the cumulative damage levels of armors of rubble-mound breakwaters over time. Finally, failure probabilities with respect to various critical limits have been analyzed throughout its anticipated service life.