• Title/Summary/Keyword: compost livestock manure

Search Result 142, Processing Time 0.025 seconds

A Study on the Nutrient Composition and Heavy Metal Contents in Livestock Manure Compost·Liquefied Fertilizer (가축분뇨 퇴비·액비의 비료성분 및 중금속 함량에 관한 연구)

  • Ahn, Taeung;Kim, Dongmin;Lee, Heungsoo;Shin, Hyunsang;Chung, Eugene
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.306-314
    • /
    • 2021
  • The application of organic fertilizer could be accompanied by potential hazards to soil and humans due to trace metals. Livestock manure compost·liquefied fertilizer is a well-established approach for the stabilization of nutrients and the reduction of pathogens and odors in manures, which can be evaluated as compost·liquefied. In this study, the livestock manure compost·liquefied fertilizers produced at 333 liquid manure public resource centers and liquid fertilizer distribution centers were collected from May to December 2019. The nutrient content (nitrogen, phosphorus, and potassium), physicochemical properties, and heavy metal content were investigated. The livestock manure compost·liquefied fertilizer was measured using a mechanical maturity measurement device. The organic matter, arsenic, cadmium, mercury, lead, chromium, copper, nickel, zinc, E. coli (O157:H7), Salmonella, etc. of the livestock manure compost·liquefied fertilizers were analyzed. The average heavy metal content in the livestock manure compost·liquefied fertilizer was as follows: Cr 2.9 mg/kg (0.2~8.7 mg/kg), Cu 20.4 mg/kg (1.6~74.1 mg/kg), Ni 1.3 mg/kg (0.4~4.2 mg/kg), and Zn 79.8 mg/kg (3.0~340.7 mg/kg). Although large-scale organic fertilizer plants and resources recycling centers produce good organic (liquid) fertilizers with proper components, it is necessary to standardize livestock manure compost·liquefied fertilizer in order to facilitate efforts to turn livestock manure into useful resources.

Survival of Salmonella enterica and Listeria monocytogenes in Chicken and Pig Manure Compost

  • Jung, Kyu-Seok;Heu, Sung-Gi;Roh, Eun-Jung;Kim, Min-Ha;Gil, Hyun-Ji;Choi, Na-Young;Lee, Dong-Hwan;Lim, Jeong-A;Ryu, Jae-Gee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.469-473
    • /
    • 2013
  • Livestock manure is a valuable source of nutrients and organic matter for plant. Thus, livestock manure compost is commonly used fertilizer in organic vegetable and fruit production in many countries. However, contaminated or inadequate manure compost can give negative effect to soil microorganisms. This study was conducted to investigate the survival difference of Salmonella enterica and Listeria monocytogenes in chicken and pig manure compost under the selected environmental conditions. Commercially available manure compost (pig, chicken) was inoculated with S. enterica and L. monocytogenes. Manure compost was incubated at $25^{\circ}C$ and consistent moisture content. Samples had been collected during 200 days depending on the given conditions. S. enterica survived for 130 days in pig manure compost and over 200 days in chicken manure compost, respectively. L. monocytogenes persisted for 120 days in pig manure compost and over 200 days in chicken manure compost, respectively. It is noted that the number of S. enterica and L. monocytogenes gradually decreased over time. The results indicate that S. enterica survived longer than L. monocytogenes in manure compost at $25^{\circ}C$. S. enterica and L. monocytogenes survived longer in chicken manure compost than in pig manure compost. Increased knowledge of pathogen behavior in agricultural environments is a valuable part of future work on improving risk evaluations and, in a longer perspective, in providing data for guidelines regarding safe handling of pathogen-contaminated manure compost and soil.

Occurrence of Tetracyclines Resistant Bacteria in the Soil Applied with Livestock Manure Compost (가축분 퇴비 시용 농경지 내 Tetracyclines 내성균 분포 특성)

  • Kim, Song-Yeob;Kim, Jang Hwan;Kim, Sung Chul;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.409-413
    • /
    • 2014
  • BACKGROUND: Large amount of veterinary antibiotics have been used in the livestock industry to prevent diseases and promote growth. These antibiotics are excreted through feces and urine in unchanged form and reach to agricultural fields via application of the livestock manure based composts. The purpose of this study was to evaluate the occurrence of tetracyclines-resistant bacteria in the soil received livestock manure compost for a long term. METHODS AND RESULTS: Tetracyclines (tetracycline TC, chlortetracycline CTC, and oxytetracycline OTC) resistance bacteria in the soil of rice-onion field applied pig manure compost (PM), in the soil of grass-rye field received cow manure compost (CM), and in the soil of rice field applied inorganic fertilizer (NPK) were determined. The soil received livestock manure composts clearly showed higher number of TC, CTC, and OTC resistance bacteria compared with the soil treated with inorganic fertilizer. The antibiotic resistant bacteria recovered appeared at 80 mg/L of tetracyclines was identified 1 specie, 6 genera 7 species, and 6 genera 7species in the soils received CM, PM, and NPK, respectively. The dominant resistant bacteria with the CM and PM application were Ochrobactrum and Rhodococcus. CONCLUSION: The application of livestock manure compost in the agricultural field is likely to contribute the occurrence of antibiotic resistance bacteria in the agricultural environment.

Correlation between Raw Materials and Chemical Contents of Livestock Compost (축분종류에 따른 가축분퇴비의 화학성분 특성분석)

  • Ahn, Ji-Hyun;Song, In-Hong;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.37-45
    • /
    • 2013
  • The aim of this study was to investigate chemical characteristic of livestock compost in association with livestock manure types (poultry, cattle, swine, and mixed manure). The livestock compost was collected from local nonghyup branches on a si-gun level. Chemical composition (nutrients, heavy metals etc.) of the samples was analyzed and Pearson's correlation analysis was performed. Quality of most compost samples met the standard of fertilizer specifications. Poultry compost contains greater nutrients especially $P_2O$ (p-value<0.01) and $NH_4$-N (p-value<0.05). Meanwhile swine compost has higher concentration in water content (p-value<0.05) and heavy metals (p-value<0.01 for Cd, Cu and Zn). Overall, poultry compost was correlated positively with nutrients while swine compost has positive correlation with water content and heavy metals. We expect that the study results can provide base data for determining compost types and amount for crop production.

Effect of Temperature on Survival of Escherichia coli O157:H7 and Listeria monocytogenes in Livestock Manure Compost

  • Jung, Kyu-Seok;Heu, Sung-Gi;Roh, Eun-Jung;Kim, Min-Ha;Gil, Hyun-Ji;Choi, Na-Young;Lee, Dong-Hwan;Lim, Jeong-A;Ryu, Jae-Gee;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.647-651
    • /
    • 2013
  • Animal manure compost is a commonly used fertilizer in organic vegetable and fruit production in Korea. However, livestock manure compost produced from animal feces can contain a lot of the non-pathogenic and pathogenic bacteria. Of particular concern are bacteria causing human food-borne illness such as Escherichia coli O157:H7 and Listeria monocytogenes. The objective of this study was to investigate effect of temperature on survival of E. coli O157:H7 and L. monocytogenes in livestock manure compost. Commercial livestock manure compost (manure 60%, sawdust 40%) was inoculated with E. coli O157:H7 and L. monocytogenes. Compost was incubated at four different temperatures (10, 25, 35, and $55^{\circ}C$) for 20 weeks. Samples were taken every week during incubation depending on the given conditions. E. coli O157:H7 persisted for up to 1 day in livestock manure compost at $55^{\circ}C$, over 140 days at $10^{\circ}C$, 140 days at $25^{\circ}C$, and 120 days at $35^{\circ}C$, respectively. L. monocytogenes persisted for up to 1 day in livestock manure compost at $55^{\circ}C$ and 140 days at $10^{\circ}C$, 70 days at $25^{\circ}C$, and 40 days at $35^{\circ}C$, respectively. The results indicated that E. coli O157:H7 and L. monocytogenes persisted longer under low temperature condition. E. coli O157:H7 survived longer than L. monocytogenes at three different temperatures (10, 25, and $35^{\circ}C$). The results are being used to develop guidelines on the management of manure to reduce the risks of E. coli O157:H7 and L. monocytogenes transmission to foods produced in the presence of animal waste.

Physicochemical Characteristics of Fermented Pig Manure Compost and Cow Manure Compost by Pelletizing (펠렛 가공처리에 따른 돈분 발효퇴비와 우분 발효퇴비의 물리화학적 특성)

  • Jeong, Kwang Hwa;Park, Chi Ho;Choi, Dong Yun;Kwak, Jung Hoon;Yang, Chang Bum;Kang, Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.118-127
    • /
    • 2005
  • The best way to treat livestock manure is a recycling the manure to arable land as an organic fertilizer. In this study, fermented cow manure compost and pig manure compost were used as a raw materials for pelletizing. The changes of physicochemical properties of each composts and pellets were investigated. The aim of this research was to improve availability of livestock manure compost. In pelletizing process of fermented livestock manure compost, the optimal water content to make pellet was around 40%. When clay was mixed by volume more than 15% as a bonding agent, the condition of pelletizing process was beginning to improve. On a dry matter basis, the contents of N, P and K of fermented pig manure compost were 2.05%, 1.89% and 1.31%, respectively. After pelletizing, the contents of compost pelleted with the pig manure compost were 1.96% 1.73% and 0.89%, respectively. The same parameters of cow manure compost were 2.52%, 1.01% and 2.98%, respectively. After processing, the contents of compost pelleted with the cow manure compost were 2.45%, 1.10% and 2.93%, respectively. After pelletizing, there were little change in the content of heavy metals such as Pb, Cd, As and Hg. When pelleted compost dried naturally was submerged in water, it was completely dissolved in 30 minutes. On the other hand, Pelleted compost dried with the mechanical convection oven set $70^{\circ}C$ for 24 hours was completely dissolved in 960 minutes. The volume and weight of pelleted compost were decreased with time. After 30 days of storing, the weight of pelleted compost was decreased by 15% compared with its original weight. The volume of it was decreased by 17~25% in the same time.

  • PDF

Effect on Nitrous Oxide Emission in Applying Livestock Manure Compost for Strawberry (Fragaria × ananassa Duch.) Cultivation in Plastic Film House (딸기(Fragaria × ananassa Duch.) 시설재배에서 가축분 퇴비 시용이 아산화질소 배출에 미치는 영향)

  • Lee, Chang-Kyu;Moon, Hyung-Cheol;Song, Eun-Ju;Choi, Seon-U;Ko, Do-Young;Chon, Hyong-Gwon;Yun, Seok-In
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.1
    • /
    • pp.111-123
    • /
    • 2021
  • This study was conducted to investigate the growth characteristics of strawberries and N2O emission by treating the compost for each type of livestock manure, which was an organic farming material, as a basal fertilization in plastic film house. Livestock manure compost, which made from cattle manure, swine manure, and poultry manure as raw materials, were applied to this experiment, treated by mixing or single on the basis of nitrogen content with the standard amount of fertilizer for strawberries. Total emission of N2O were 10.7% higher than those in poultry manure compost treatment compared to the inorganic fertilizer treatment, but 16.5~41.9% lower than those in other livestock manure compost treatment. The period of N2O emission mainly was up to the 17th day after fertilizer application, accounting for 70~87% of the total amount of discharge, and 13~30% of the total amount was emitted for 158 days later. N2O emission was decreased significantly NH4+-N content in the soil, and increased NO3--N. As compared with control, the number of leaves, leaf width and crown diameter of livestock manure compost treatments were not significantly different, leaf length of cattle+poultry, cattle+ swine, swine+poultry treatment higher, and SPAD (soil plant analysis development) values of cattle+poultry treatment highest. There was no significant difference in weight and sugar content of strawberry fruits among treatments.

Estimation of Ammonia Emission with Compost Application in Plastic House for Leafy Perilla Cultivation (시설잎들깨 재배의 퇴비 시용에 의한 암모니아 배출량)

  • Hong, Sung-Chang;Kim, Jin-Ho;Kim, Min-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.149-160
    • /
    • 2021
  • BACKGROUND: Concerns have been raised about the impact of recent high concentrations of fine dust on human health. Ammonia(NH3) reacts with sulfur oxides and nitrogen compounds in the atmosphere to form ultrafine ammonium sulfate and ammonium nitrate (PM2.5). There is a growing need for accurate estimates of the amount of ammonia emitted during agricultural production. Therefore, in this study, ammonia emissions generated from the cultivation of leafy perilla in plastic houses were determined. METHODS AND RESULTS: Cow manure compost, swine manure compost, and poultry manure compost each at 34.6 ton ha-1, the amount commonly used by farmers in the field, was sprayed on the soil surface. Just after spraying cow manure compost, swine manure compost, and poultry manure compost, the ammonia was periodically measured and analyzed to be 22.5 kg ha-1, 22.8 kg ha-1, and 85.2 kg ha-1, respectively. The emission factors were estimated at 70.0 kg-NH3 ton-N, 62.8 kg-NH3 ton-N, and 234.1 kg-NH3 ton-N, respectively. Most ammonia was released in the two weeks after application of the compost and then the amount released gradually decreased. CONCLUSION: Therefore, it is necessary to improve the emission factor through a study on the estimation of ammonia emission by type of livestock manure and major farming types such as rice fields and uplands, and to update data on the production, distribution, and sales of livestock manure.

Physico-chemical properties of livestock manure compost using spent oyster mushroom (Pleurotus ostreatus) substrate (느타리 수확후배지를 이용한 가축분퇴비의 이화학적 특성)

  • Jae-Eun Jang;Sung-Hee Lim;Min-Woo Shin;Ji-Young Moon;Joo-Hee Nam;Gab-June Lim
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.118-125
    • /
    • 2023
  • We conducted an on-site application study at the livestock cooperative fertilizer plant to compare the composting period, temperature change, moisture content, and chemical properties between livestock manure compost using sawdust as a moisture regulator with those using spent oyster mushroom substrate. The composting period, moisture content, and fertilizer composition of compost containing spent oyster mushroom substrate did not differ from that of conventional compost mixed with sawdust after the first and second fermentation and post-maturation stages, it was suitable as a material for manufacturing livestock manure compost. The spent oyster mushroom substrate also lower the production cost of livestock manure compost by replacing the more expensive sawdust. The developed technology is expected to contribute towards the utilization of by-products of the oyster mushroom harvest while simultaneously producing high quality livestock manure compost.

Fertilization Efficiency of Livestock Manure Composts as Compared to Chemical Fertilizers for Paddy Rice Cultivation

  • Kang, Chang-Sung;Roh, An-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.86-92
    • /
    • 2012
  • To promote the practical use of livestock manure compost (LC) for paddy rice cultivation, the fertilization efficiency of nutrients in LCs was investigated compared to that of chemical fertilizer. This experiment was conducted at rice field in Hwaseong, Korea, with 6 treatments by each of 3 kinds of tested LCs, cattle manure compost (CaC), swine manure compost (SwC) and chicken manure compost (ChC). The treatments consisted of 3 application levels of LCs and 3 chemical fertilizer treatments having the same application levels with LCs. $NH_4$-N content in soil became higher according to the increase in the urea application rate, while it became lower in LC plots than in urea plots, and statistically had no significant difference among LC plots. There was a close relationship between phosphate fertilization rate and the increment of soil available phosphate content after experiment resulting y = 0.1788x - 6.169 ($R^2=0.9425$) when applied fused superphosphate fertilizer, and y = 0.0662x - 2.689 ($R^2=0.9315$) when applied LC at the equivalent rates to phosphate input (x: phosphate application rate, kg $ha^{-1}$, y: increment in soil available phosphate content, mg $kg^{-1}$). And from these two equations, the correlation on the phosphate application rate between fused superphosphate fertilizer and LC could be obtained as y = 2.7056x - 52.492 (x: $P_2O_5$ application rate of fused superphosphate, kg $ha^{-1}$, y: $P_2O_5$ application rate of LC, kg $ha^{-1}$). Plant height, number of tillers, nutrients uptake by rice, and rice yield showed higher levels in N 100% and N 150% application plots of chemical fertilizers, while every LC plots exhibited lower values and no significant difference among them. Relative nitrogen fertilization efficiencies of LCs compared to urea was 12.3% for CaC, 8.8 for SwC and 24.6 for ChC, respectively.