• Title/Summary/Keyword: composite-$Al_2O_3$

Search Result 566, Processing Time 0.026 seconds

A Basic Study on Capture and Solidification of Rare Earth Nuclide (Nd) in LiCl-KCl Eutectic Salt Using an Inorganic Composite With Li2O-Al2O3-SiO2-B2O3 System (Li2O-Al2O3-SiO2-B2O3 구조의 무기합성매질을 이용한 LiCl-KCl 공융염 내 희토류 핵종(Nd)의 분리 및 고화에 관한 기초연구)

  • Kim, Na-Young;Eun, Hee-Chul;Park, Hwan-Seo;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • The pyroprocessing of spent nuclear fuel generates LiCl-KCl eutectic waste salt containing radioactive rare earth nuclides. It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste in a hot-cell facility. In this study, capture and solidification of a rare earth nuclide (Nd) in LiCl-KCl eutectic salt using an inorganic composite with a $Li_2O-Al_2O_3-SiO_2-B_2O_3$ system was conducted to simplify the existing separation and solidification process of rare earth nuclides in LiCl-KCl eutectic waste salt from the pyroprocessing of spent nuclear fuel. More than 98wt% of Nd in LiCl-KCl eutectic salt was captured when the mass ratio of the composite was 0.67 over $NdCl_3$ in the eutectic salt. The content of $Nd_2O_3$ in the Nd captured-composite reached about 50wt%, and this composite was directly fabricated into a homogeneous and chemical resistant glass waste in a monolithic form. These results will be utilized in designing a process to simplify the existing separation and solidification process.

Microstructure and Mechanical Properties of Platelet Reinforced Mullite-Zirconia Composites (Platelet 강화 Mullite-Zirconia 복합체의 미세구조와 기계적 성질)

  • 박상엽
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.10
    • /
    • pp.757-764
    • /
    • 1992
  • The platelet reinforced mullite-zirconia composites were prepared by pressurelss sintering with addition of Al2O3 or SiC platelets. The sintered density of 10 vol% Al2O3 platelet reinforced mullite-zirconia composite was 98.3% at 1700$^{\circ}C$. The fracture strength (290 MPa) and fracture toughness (4.9 MPa$.${{{{ SQRT { m} }}) in the Al2O3 platelet reinforced mullite-zirconia composite were enhanced compared with those of mullite-zirconia due to the crack deflection and load transfer effect of platelets. Whereas, the SiC platelet reinforced mullite-zirconia composite sintered at 1650$^{\circ}C$ showed relatively lower density (95.7%), fracture strength (170 MPa), and fracture toughness (3.9 MPa$.${{{{ SQRT { m} }} than the Al2O3 platelet reinforced mullite-zirconia composite.

  • PDF

Catalytic CO2 Methanation over Ni Catalyst Supported on Metal-Ceramic Core-Shell Microstructures (금속-세라믹 코어-쉘 복합체에 담지된 Ni 금속 촉매를 적용한 CO2 메탄화 반응 특성연구)

  • Lee, Hyunju;Han, Dohyun;Lee, Doohwan
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.154-162
    • /
    • 2022
  • Microstructured Al@Al2O3 and Al@Ni-Al LDH (LDH = layered double hydroxide) core-shell metal-ceramic composites are prepared by hydrothermal reactions of aluminum (Al) metal substrates. Controlled hydrothermal reactions of Al metal substrates induce the hydrothermal dissolution of Al ions at the Al-substrate/solution interface and reconstruction as porous metal-hydroxides on the Al substrate, thereby constructing unique metal-ceramic core-shell composite structures. The morphology, composition, and crystal structure of the core-shell composites are affected largely by the ions in the hydrothermal solution; therefore, the critical physicochemical and surface properties of these unique metal-ceramic core-shell microstructures can be modulated effectively by varying the solution composition. A Ni/Al@Al2O3 catalyst with highly dispersed catalytic Ni nanoparticles on an Al@Al2O3 core-shell substrate was prepared by a controlled reduction of an Al@Ni-Al LDH core-shell prepared by hydrothermal reactions of Al in nickel nitrate solution. The reduction of Al@Ni-Al LDH leads to the exolution of Ni ions from the LDH shell, thereby constructing the Ni nanoparticles dispersed on the Al@Al2O3. The catalytic properties of the Ni/Al@Al2O3 catalyst were investigated for CO2 methanation reactions. The Ni/Al@Al2O3 catalyst exhibited 2 times greater CO2 conversion than a Ni/Al2O3 catalyst prepared by conventional incipient wetness impregnation and showed high structural stability. These results demonstrate the high effectiveness of the design and synthesis methods for the metal-ceramic composite catalysts derived by hydrothermal reactions of Al metal substrates.

Fabrication of $Al_2O_{3p}/Al$ composites by in-situ Reaction Process of Molten Al (In-situ 반응에 의한 $Al_2O_{3p}/Al$기 복합재료의 제조)

  • 김재동;정해용;고성위
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.36-44
    • /
    • 1999
  • The fabrication process of $Al_2O_{3p}/Al$ composite by in-situ process was investigated. The effects of processing variables such as addition type and content of Mg, processing temperature and time on the infiltration behavior of molten Al, microstructure and hardness were investigated. When the pure Al was infiltrated into mixtures of Mg and $Al_2O_3l$ powder, processing temperature required to spontaneous infiltration was decreased, and the content of Mg was the most powerful variable for infiltration of molten Al. But when the Al-Mg alloy was infiltrated into $Al_2O_3l$ particles, infiltration ratio indicated nearly same value regardless of Mg content in alloy and processing temperature, and critical processing temperature required to spontaneous infiltration was $800^{\circ}C$. The $Al_2O_{3p}/Al$ composites which were fabricated by mixtures of Mg and $Al_2O_3l$ powders resulted in high hardness value, but hardness values were scattered due to non uniform dispersion of $Al_2O_3l$ particles by excessive reaction of Mg.

  • PDF

The Effect of Anodizing on the Electrical Properties of ZrO2 Coated Al Foil for High Voltage Capacitor

  • Chen, Fei;Park, Sang-Shik
    • Applied Science and Convergence Technology
    • /
    • v.24 no.2
    • /
    • pp.33-40
    • /
    • 2015
  • $ZrO_2$ and Al-Zr composite oxide film was prepared by vacuum assisted sol-gel dip coating method and anodizing. $ZrO_2$ films annealed above $400^{\circ}C$ have tetragonal structure. $ZrO_2$ layers inside etch pits were successfully coated from the $ZrO_2$ sol. The double layer structures of samples were obtained after being anodized at 100 V to 600 V. From the TEM images, it was found that the outer layer was $Al_2O_3$, the inner layer was multi-layer of $ZrO_2$, Al-Zr composite oxide and Al hydrate. The capacitance of $ZrO_2$ coated foil exhibited about 28.3% higher than that of non-coating foil after being anodized at 100 V. The high capacitance of $ZrO_2$ coated foils anodized at 100 V can be attributed to the relatively high percentage of inner layer in total thickness. The electrical properties, such as withstanding voltage and leakage current of coated and non-coated Al foils showed similar values. From the results, $ZrO_2$ and Al-Zr composite oxide is promising to be used as the partial dielectric of high voltage capacitor to increase the capacitance.

Wear Properties of Thermal Sprayed Al-based Metal Matrix Composites Against Different Counterparts (용사법에 의해 제조된 $Al/Al_2O_3$ 복합재료의 상대재에 따른 마모특성)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.60-65
    • /
    • 2008
  • This study aims at investigating the wear properties of thermally sprayed $Al/Al_2O_3$ metal matrix composite(MMC) coating against different counterparts. $Al/Al_2O_3$ MMC coatings were fabricated using a flame spray system on an Al 6061 substrate. Dry sliding wear tests were performed using the sliding speeds of 0.2m/s and the applied loads of 1 and 2 N. AISI 52100, $Al_2O_3$, $Si_3N_4\;and\;ZrO_2$ balls(diameter: 8mm) were used as counterpart materials. Wear properties of $Al/Al_2O_3$ MMC coatings were analyzed using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear properties of $Al/Al_2O_3$ composite coatings were much influenced by counterpart materials. In the case of AISI 52100 used as counterparts, the wear rate of composites coating layer increased according to the increase of the applied load. On the contrary, in the case of ceramics used as counterparts, the wear rate of composites coating layer decreased according to the increase of the applied load.

  • PDF

Effects of Matrix Material Particle Size on Mullite Whisker Growth

  • Hwang, Jinsung;Choe, Songyul
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.313-319
    • /
    • 2021
  • Understanding of effects of changes in the particle size of the matrix material on the mullite whisker growth during the production of porous mullite is crucial for better design of new porous ceramics materials in different applications. Commercially, raw materials such as Al2O3/SiO2 and Al(OH)3/SiO2 are used as starting materials, while AlF3 is added to fabricate porous mullite through reaction sintering process. When Al2O3 is used as a starting material, a porous microstructure can be identified, but a more developed needle shaped microstructure is identified in the specimen using Al(OH)3, which has excellent reactivity. The specimen using Al2O3/SiO2 composite powder does not undergo mulliteization even at 1,400 ℃, but the specimen using the Al(OH)3/SiO2 composite powder had already formed complete mullite whiskers from the particle size specimen milled for 3 h at 1,100 ℃. As a result, the change in sintering temperature does not significantly affect formation of microstructures. As the particle size of the matrix materials, Al2O3 and Al(OH)3, decreases, the porosity tends to decrease. In the case of the Al(OH)3/SiO2 composite powder, the highest porosity obtained is 75 % when the particle size passes through a milling time of 3 h. The smaller the particle size of Al(OH)3 is and the more the long/short ratio of the mullite whisker phase decreases, the higher the density becomes.

Microstructure Control of Fibrous Monolithic Al2O3-ZrO2 Composites (섬유단상 Al2O3-ZrO2 세라믹 복합재료의 미세조직제어)

  • Kim, Ki-Hyun;Kim, Taek-Soo;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.213-218
    • /
    • 2003
  • Fibrous monolithic control of$ Al_2$$O_3$ -$ZrO_2$composite was investigated by multi-pass extrusion process. To obtain sound $Al_2$$O_3$-X $O_2$sintered bodies, burning out and sintering process were carefully carried out. The sintered bodies showed continuous, fibrous monolithic microstructure without any swelling. Many microcracks were observed at the $Al_2$$O_3$-$ZrO_2$interfaces due to the mismatching of thermal expansion coefficient between $Al_2$$O_3$ and $ZrO_2$phase. Most of m- $ZrO_2$grains included twin defects such as (001), (010) and (011) type to accommodate the phase transformation induced stress.

A Study on the Machinability and Machining properties of Composite Ceramics$(iC-Al_2O_3)$ by EDM (복합 세라믹스$(iC-Al_2O_3)$의 방전가공특성에 관한 연구)

  • 윤병주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.61-68
    • /
    • 1995
  • TiC-Al2O3 composite ceramics has high hardness, high strength, high wear and corrosion resistance. Therefore, composite ceramics have been concerned significantly with some excellent properties and many functions as new industrial materials to the industry at large. In present research, experiments are carried out to obtain the machinability and machining properties by EDM. As a result, the most suitable machining conditions of TiC-Al2O3 composite ceramics was that the pulse duration is 10-60$mutextrm{s}$, the peak current is 10-16A. The machining speed and the wear of the tool electrode increased with the increase in peak current.

  • PDF

Effect of Plating Parameters on the Electrodeposition of Ni-alumina Nanocomposite

  • Gyawalia, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.4
    • /
    • pp.165-169
    • /
    • 2010
  • $Ni-Al_2O_3$ nanocomposite coatings were fabricated by conventional electrodeposition technique using nickel sulfamate bath. Effect of plating parameters on electrodeposition of $Ni-Al_2O_3$ nanocomposite were studied. The properties of the nano composite were investigated by using SEM, XRD, and Vicker's microhardness test. The results demonstrated that $Al_2O_3$ incorporation in the composite coatings was found to be increased by increasing stir rate and $Al_2O_3$ content in plating bath. Microhardness of the composite coatings was also increased with increasing content of the nano particles in the plating bath. The surface morphologies of the nanocomposite coatings were found to be varied with varying pH, current densities as well as alumina content in the plating bath.