• 제목/요약/키워드: composite wall system

검색결과 125건 처리시간 0.022초

삼성의 벽식 구조 복합화 공법 (A Study on the Development of Samsung Composite Shear Wall System)

  • 박준성;김연경
    • 한국건축시공학회지
    • /
    • 제2권2호
    • /
    • pp.175-180
    • /
    • 2002
  • "Samsung Composite Shear Wall System" has its basis on "Samung Able System". "Samsung Able System" has some problems not only in the connection structure but also in waterproofing and soundproofing. We developed "Samsung Composite Shear Wall System" in order to solve these matters and expand PC system. "Samsung Composite Shear Wall System" is the compromise and complement of all the merits of full PC, half PC and in-situ concrete system.

Effect of creep and shrinkage in a class of composite frame - shear wall systems

  • Sharma, R.K.;Maru, Savita;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.333-348
    • /
    • 2003
  • The behaviour of composite frame - shear wall systems with regard to creep and shrinkage with high beam stiffness has been largely unattended until recently since no procedure has been available. Recently an accurate procedure, termed the Consistent Procedure (CP), has been developed which is applicable for low as well as for high beam stiffness. In this paper, CP is adapted for a class of composite frame - shear wall systems comprising of steel columns and R.C. shear walls. Studies are reported for the composite systems with high as well as low beam stiffness. It is shown that considerable load redistribution occurs between the R.C. shear wall and the steel columns and additional moments occur in beams. The magnitude of the load redistribution and the additional moment in the beams depend on the stiffness of the beams. It is also shown that the effect of creep and shrinkage are greater for the composite frame - shear wall system than for the equivalent R.C. frame - shear wall system.

Flexural performance of composite walls under out-of-plane loads

  • Sabouri-Ghomi, Saeid;Nasri, Arman;Jahani, Younes;Bhowmick, Anjan K.
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.525-545
    • /
    • 2020
  • This paper presents a new structural system to use as retaining walls. In civil works, there is a general trend to use traditional reinforced concrete (RC) retaining walls to resist soil pressure. Despite their good resistance, RC retaining walls have some disadvantages such as need for huge temporary formworks, high dense reinforcing, low construction speed, etc. In the present work, a composite wall with only one steel plate (steel-concrete) is proposed to address the disadvantages of the RC walls. In the proposed system, steel plate is utilized not only as tensile reinforcement but also as a permanent formwork for the concrete. In order to evaluate the efficiency of the proposed SC composite system, an experimental program that includes nine SC composite wall specimens is developed. In this experimental study, the effects of different parameters such as distance between shear connectors, length of shear connectors, concrete ultimate strength, use of compressive steel plate and compressive steel reinforcement are investigated. In addition, a 3D finite element (FE) model for SC composite walls is proposed using the finite element program ABAQUS and load-displacement curves from FE analyses were compared against results obtained from physical testing. In all cases, the proposed FE model is reasonably accurate to predict the behavior of SC composite walls under out-of-plane loads. Results from experimental work and numerical study show that the SC composite wall system has high strength and ductile behavior under flexural loads. Furthermore, the design equations based on ACI code for calculating out-ofplate flexural and shear strength of SC composite walls are presented and compared to experimental database.

합성부재를 이용한 전단벽-골조 구조시스템의 횡변위 최적제어방안 (Lateral Drift Optimal Control Technique of Shear Wall-Frame Structure System using Composite Member)

  • 이한주;정성진;김호수
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.191-198
    • /
    • 2005
  • The effective stiffness-based optimal technique to control quantitatively lateral drift for shear wall-Frame structure system using composit member subject to lateral loads is presented. Also, displacement sensitivity depending on behavior characteristics of structure system is established and approximation concept that preserves the generality of the mathematical programming is introduced. Finally, the resizing technique of shear wall, frame and composite member is developed and the example of 20 story framework is presented to illustrate the features of the quantitative lateral drift control technique.

  • PDF

A numerical study on the seismic behavior of a composite shear wall

  • Naseri, Reza;Behfarnia, Kiachehr
    • Computers and Concrete
    • /
    • 제22권3호
    • /
    • pp.279-289
    • /
    • 2018
  • Shear walls are one of the important structural elements for bearing loads imposed on buildings due to winds and earthquakes. Composite shear walls with high lateral resistance, and high energy dissipation capacity are considered as a lateral load system in such buildings. In this paper, a composite shear wall consisting of steel faceplates, infill concrete and tie bars which tied steel faceplates together, and concrete filled steel tubular (CFST) as boundary columns, was modeled numerically. Test results were compared with the existing experimental results in order to validate the proposed numerical model. Then, the effects of some parameters on the behavior of the composite shear wall were studied; so, the diameter and spacing of tie bars, thickness and compressive strength of infill concrete, thickness of steel faceplates, and the effect of strengthening the bottom region of the wall were considered. The seismic behavior of the modeled composite shear wall was evaluated in terms of stiffness, ductility, lateral strength, and energy dissipation capacity. The results of the study showed that the diameter of tie bars had a trivial effect on the performance of the composite shear wall, but increasing the tie bars spacing decreased ductility. Studying the effect of infill concrete thickness, concrete compressive strength, and thickness of steel faceplates also showed that the main role of infill concrete was to prevent buckling of steel faceplates. Also, by strengthening the bottom region of the wall, as long as the strengthened part did not provide a support performance for the upper part, the behavior of the composite shear wall was improved; otherwise, ductility of the wall could be reduced severely.

Corner Steel plate-Reinforced Core Wall System

  • Park, Hong-Gun;Kim, Hyeon-Jin;Park, Jin-Young
    • 국제초고층학회논문집
    • /
    • 제8권3호
    • /
    • pp.193-199
    • /
    • 2019
  • For better structural performance and constructability, a new composite core wall system using steel plate columns at the corners of the core section was developed. Using the proposed core wall, nonlinear section analysis and 3-dimensional structural analysis were performed for the prototype core wall section and super high-rise building, respectively. The analysis results showed that, when compared to traditional RC core wall case, the use of the corner steel plate columns provided better structural capacity, which allows less wall thickness and re-bars. Further, due to such effects, the construction cost and time can be reduced despite the use of steel plate columns.

Eccentric compressive behavior of novel composite walls with T-section

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.495-508
    • /
    • 2020
  • Double skin composite walls are alternatives to concrete walls to resist gravity load in structures. The composite action between steel faceplates and concrete core largely depends on the internal mechanical connectors. This paper investigates the structural behavior of novel composite wall system with T section and under combined compressive force and bending moment. The truss connectors are used to bond the steel faceplates to concrete core. Four short specimens were designed and tested under eccentric compression. The influences of the thickness of steel faceplates, the truss spacing, and the thickness of web wall were discussed based on the test results. The N-M interaction curves by AISC 360, Eurocode 4, and CECS 159 were compared with the test data. It was found that AISC 360 provided the most reasonable predictions.

지하 합벽 거푸집의 시공단계별 원가 분석에 관한 연구 (Cost Analysis of Construction Phase in Basement Composite Wall Form)

  • 최오영;허경무;김태희;김재엽;김광희
    • 한국건축시공학회지
    • /
    • 제9권6호
    • /
    • pp.189-195
    • /
    • 2009
  • 최근 인구의 도심 집중화 현상이 심화됨에 따라 토지이용의 극대화를 위해 지하공간의 활용이 매우 활발하게 진행되고 있다. 또한 최근 건축물의 지하심도가 깊고 인접건물과 근접시공 되는 경우가 많으므로 건축물의 지하외벽은 슬러리 월 또는 흙막이가시설을 외벽 거푸집으로 사용하고 내측에만 거푸집을 시공하는 방식인 합벽으로 시공되고 있다. 그러나 지하층 합벽 거푸집공사에 대한 원가분석이 건축공사 표준품셈 등에 없는 실정이다. 따라서 본 연구는 지하층 합벽 거푸집 공사의 원가분석을 시행하여 시공단계별 투입원가에 대한 자료를 제공하고자 하였다. 연구결과는 수평목 설치 및 해체는 3%, 거푸집 설치 및 해체는 26%, 보강재 설치 및 해체는 12%, 지지대 설치 및 해체는 42%, 기타 작업은 17% 이다. 정확한 투입원가를 프로세스별 구분하여 정리함으로서 신기술 및 신공법 개발 시 중점을 두어야 하는 포인트를 제시할 것으로 판단된다.

천장 인필시스템에 따른 장수명주택 경량벽체의 성능실험에 관한 연구 (A Study on the Performance Experiments of Lightweight Wall of Long-life Housing by Ceiling Infill System)

  • 서동구;이종호;김은영;황은경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.247-248
    • /
    • 2018
  • In order to secure the variability of long-life housing, dry walls are used. The composite gypsum board panel is the most frequently used infill system for the wall, and it is an excellent construction method in terms of constructability and economic feasibility. However, there are also problems such as the destruction of Ondol pipes at the bottom floor and being unable to fix the light weight steel frame (M-bar) when a variable composite gypsum board panel is used. To solve such problems, a wall with a method of fixing only the top part without fixing the bottom floor is developed, but it is difficult to identify the durability of ceiling frame according to the tensile force of stud and the safety according to the Stiffness and impact resistance (soft body) of ceiling frame. Therefore, this study verified the effectiveness of infill system for the wall by conducting experiment on the stiffness and impact resistance of composite gypsum board panel according to the reinforcement of ceiling frame (wooden frame, double saw-toothed bracket, Cross M-bar). As a result, it was possible to secure the safety of wooden frame while the impact resistance and the Stiffness of double saw-toothed bracket and cross M-bar were not secured.

  • PDF

장스팬이 가능한 친환경 공동주택용 철골 프리캐스트 합성보 개발 (Development of Long-Span Steel-Precast Composite Beam for Green Apartment Building)

  • 윤태호;홍원기;박선치;윤대영
    • KIEAE Journal
    • /
    • 제11권1호
    • /
    • pp.9-14
    • /
    • 2011
  • Currently, the multi-residential apartments used in Korea are mostly bearing wall apartments which don't satisfy consumers for the lack of architectural plan flexibility. And due to remodelling-incompatible, bearing wall apartments have to be reconstructed. It is, thus, necessary to develop multi-residential apartments utilizing composite beam that can replace the conventional bearing wall-type apartment buildings. Composite beams proposed in this paper ensure modification of space and quality control, while the floor heights are maintained at the same floor height as in bearing wall structures. This study analyzes the experimental behavior of composite beams with proper combination of structural steel, reinforced concrete, and precast concrete. By comparing with the theoretical analysis and experimental results, the accuracy of flexural moment capacity and neutral axis was evaluated. The experiments were performed by two simply-supported specimens using loading and unloading. When the analysis results were compared with the experimental results, the flexural moment capacity of the composite beam was shown with an error of approximately -0.5 to 0.1% at the maximum load limit state.