• Title/Summary/Keyword: composite repaired structures

Search Result 65, Processing Time 0.025 seconds

Fracture Mechanics Analysis of Cracked Plate Repaired by Patch (I) (보강재로 보수된 균열평판의 파괴역학적 해석(I))

  • Jeong, Gi-Hyeon;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2000-2006
    • /
    • 2000
  • The enhancement of service life of damaged or cracked structures is currently major issue to the researchers and engineers. In order to improve the life of cracked aging aircraft structures, the repair technique which uses adhesively bonded boron/epoxy composite patches is being widely considered as a cost-effective and reliable method. This paper is to study the performance of the bonded composite patch repair of a plate containing an inclined central through-crack. A 3-dimensional finite element method having three layers to the cracked plate, composite patch and adhesive layer, is used to compute the stress intensity factor. In this paper, the reduction of stress intensity factors near the crack-tip are determined to evaluate the effects of various non-dimensional design parameter including composite patch thickness, and material properties of the composite patch and thickness of the adhesive layer, materials of patch etc., and the crack length, Finally, The problem of how to optimize the patch geometric configurations has been discussed.

Fiber Optic Sensors for Smart Monitoring (스마트 모니터링용 광섬유센서)

  • Kim, Ki-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.137-145
    • /
    • 2006
  • Recently, the interests in structural monitoring of civil infrastructures are increased. Especially, as the civil infrastructures such as bridges, tunnels and buildings become large-scale, it is necessary to monitor and maintain the safety state of the structures, which requires smart systems that can supply long-term monitoring during the service time of the structures. In this paper, we investigated the possibilities of fiber optic sensor application to the various structures. We investigate the possibility of using fiber optic Bragg grating sensors to joint structure. The sensors show good response to the structural behavior of the joint while electric gauges lack of sensitivity, durability and long term stability for continuous monitoring. We also apply fiber optic structural monitoring to the composite repaired concrete beam structure. Peel-out effects is detected with optical fiber Bragg grating sensors and the strain difference between main structure and repaired carbon sheets is observed when they separate each other. The real field test was performed to verify the behaviors of fiber Bragg grating sensors attached to the containment structure in Uljin nuclear power plant in Korea as a part of structural integrity test which demonstrates that the structural response of the non-prototype primary containment structures. The optical fiber Bragg grating sensor smart system which is the probable means for long term assessments can be applicable to monitoring of structural members in various civil infrastructures.

Fatigue life enhancement of defective structures by bonded repairs

  • Wang, Q.Y.;Kawagoishi, N.;Chen, Q.;Pidaparti, R.M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.277-286
    • /
    • 2004
  • Defective metallic components and structures are being repaired with bonded composite patches to improve overall mechanical and fatigue properties. In this study, fatigue crack growth tests were conducted on pre-cracked 7075/T6 Aluminum substrates with and without bonded Boron/epoxy patches. A considerable increase in the fatigue life and a decrease in the stress intensity factor (SIF) were observed as the number of patch plies increased. The experimental results demonstrate that the patch configurations and patch thickness can enhance fatigue life by order of magnitude. Quantitative comparisons between analytical and experimental data were made, and the analytical model based on a modified Rose's analytical solution appears to best estimate the fatigue life.

Load carrying capacity of CFRP retrofitted broken concrete arch

  • Wang, Peng;Jiang, Meirong;Chen, Hailong;Jin, Fengnian;Zhou, Jiannan;Zheng, Qing;Fan, Hualin
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.187-194
    • /
    • 2017
  • To reuse a broken plain concrete (PC) arch, a retrofitting method was proposed to ensure excellent structural performances, in which carbon fiber reinforced polymers (CFRPs) were applied to repair and strengthen the damaged PC arch through bonding and wrapping techniques. Experiments were carried out to reveal the deformation and the load carrying capacity of the retrofitted composite arch. Based on the experiments, repairing and strengthening effects of the CFRP retrofitted broken arch were revealed. Simplified analysing model was suggested to predict the peak load of the CFRP retrofitted broken arch. According to the research, it is confirmed that absolutely broken PC arch can be completely repaired and reinforced, and even behaves more excellent than the intact PC arch when bonded together and strengthened with CFRP sheets. Using CFRP bonding/wrapping technique a novel efficient composite PC arch structure can be constructed, the comparison between rebar reinforced concrete (RC) arch and composite PC arch reveals that CFRP reinforcements can replace the function of steel bars in concrete arch.

The Internet-based Composite Repair (인터넷 기반 복합재 보수)

  • 추원식;안성훈
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.139-142
    • /
    • 2003
  • As composite materials are gaining wide acceptance in aircraft structure, repair of damaged composite is becoming an important issue. The issues in composite repair include high cost, material interchangeability, water ingression, and structural integrity. To address these problems, researchers have studied on the composite repair in various aspects. In this paper, an Internet-based advisory service (called Repair Advisory Service, RAS) for composite repair is proposed to increase efficiency for repair process. In the RAS system the web browser is used as its user interface, which provides easy access to the service. The RAS server provides web-based tools for failure prediction, Structural Repair Manual (SRM), automated prepreg cutting process, material properties, inventory and knowledge base. The computer codes implemented for repair design estimate the tensile failure and shear failure of repaired structures. The prediction of failure is based on the maximum strain criterion for tensile failure while elastic-perfect plastic shear failure model is applied for interfacial failure. The OEM's SRM is provided in the PDF format for viewing and searching by web browsers instead of looking up paper version SRM. The knowledge base in this site offers a room to share and distribute ideas, memos, publications, or suggestions from the repair engineers. The fabrication tool of RAS reads repair geometry from engineers then generates a CNC toolpath to cut prepreg patches. The RAS service is open to public and available at http://nano.gsnu.ac.kr/. Broad feedback from field technicians and engineers is welcome to improve the usefulness of RAS.

  • PDF

Behavior of structures repaired by hybrid composite patches during the aging of the adhesive

  • Habib Achache;Rachid Zahi;Djaafar Ait Kaci;Ali Benouis
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.135-147
    • /
    • 2024
  • The objective of this study is to analyze, using the finite element method, the durability of damaged and repaired structures under the effect of mechanical loading coupled with environmental conditions (water absorption and/or temperature). The study is based on the hybrid patch repair technique, considering several parameters based on the J integral to observe the behavior of the adhesive in transferring load from a damaged plate to the repair patch. The results clearly show that water absorption and increased temperature cause degradation of the mechanical properties of the adhesive, leading to an increase in its plasticization, which is beneficial for the assembly's strength. However, the degradation of the adhesive's properties due to aging in the repair results in poor load transfer from the damaged area to the patch. The findings of this study allowed the authors to conclude that the [0°]8 sequence consistently offers the best performance, with the lowest J integral values and superior crack resistance. The lowest the J integral for the [0°]8 stacking sequence is typically 3-7% lower than that of the [0/-45/45/90]S and [0/-45/90/45]S sequences at elevated temperatures. At 60℃, the J integral increases by approximately 3-6% compared to 40℃ and 20, depending on the aging duration and stacking sequences.

Compressive Behavior of CFS Strengthened Concrete Specimens with Various Cross-Sectional Shapes and Laminate Angles (단면형과 적층각의 변화에 따른 CFS보강 콘크리트 공시체의 압축거동)

  • 김석호;김장호;이성태;이상호;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.365-370
    • /
    • 2001
  • The repairing technique of surface wrapping concrete structural members using fiber composite sheet have been widely used. The research efforts have been limited to studying relative strength increase of repaired concrete structures rather than ductility improvement based on composite material effect and the interface effect between composite and concrete. The compression tests of CFS(carbon fiber sheet) reinforced concrete specimens with various cross-sectional shapes and laminate angles have been peformed. FEM algorithm considering various parameters will be performed based on the obtained data. The results will be discussed in detail.

  • PDF

The Strength Evaluation of Reinforced Flaw by Stiffener in Woven Fiber Reinforced Composite Plates (섬유강화 복합재료에서 결함의 보강재에 의한 강도 평가)

  • 이문철;최영근;이택순
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.96-104
    • /
    • 1994
  • The use of advanced composite materials has grown in recent years in aerospace and other structures. Out of various kinds of repairing methods the one selecteh for this study is an idealized case which simulates a situation where a damaged laminate has been repaired by drilling a hole and therefter plugging the hole with reinforcement. Two typesof reinforcement are investigated ;adhesively bonged plug reinforcement or snug-fit unbonded plug in the hole. For each case of reinforcement, four different sizes of hole diameter and three types of reinforcing material(steel, aluminum, plexiglass) are employed for investigation. The experiment are mainloy forced on the evaluation of ultimate strength of laminate with reinforced hole in comparison to its counterpart with the open hole.

  • PDF

Self Diagnosis Technique of Concrete Structure Repaired and Strengthened by Carbon fiber Sheets Using Optical fiber Sensors (광섬유 센서를 이용한 탄소섬유시트 보수보강 콘크리트구조물에서의 자기진단기법)

  • Kim, Ki-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2003
  • In order to extend the life time of building and civil infra-structure, nowadays, patch type fibrous composite materials are widely used. Repaired concrete columns and beams gain the stiffness and strength, but they lose toughness and show brittle failure. Usually, the cracks of concrete structures are visible with naked eyes and the status of the structure in the life cycle is estimated with visible inspection. After repairing of the structure, crack visibility is blocked by repaired carbon sheets. Therefore, structural monitoring after repairing is indispensible and self diagnosis method with optical fiber sensor is very useful. In this paper, peel-out effects is detected with optical fiber sensors and the strain difference between main structure and repaired carbon sheets when they separate each other.

Analysis of various composite patches effect on mechanical properties of notched Al-Mg plate

  • Meran, Ahmad P.;Samanci, Ahmet
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.685-692
    • /
    • 2017
  • In this study, the effect of various adhesively bonded composite patches on mechanical properties of notched Al-Mg alloy plates was analyzed. For this purpose firstly, the un-notched and notched specimens were fabricated from 5086 Al-Mg alloys which have been used in armor-plated military vehicles. The surface notches as a flaw were machined with circular cutting tool to form notch aspect ratio a/c=0.15 and notch-to-thickness ratios a/t=0.5 in the radial direction on the test specimens. Then, various composite patches which reinforced by glass, carbon and Kevlar fibers were bonded adhesively at elliptically surface notches. Finally, experimental measurements conducted by applying tensile static loading. The experimental results showed that repairing with composite patches with order of carbon, glass and Kevlar fibers have remarkable effect on tensile strength of the notched plate. Also the finite element models were developed using Abaqus/Explicit code to predict the tensile strength and elongation of unrepaired notched specimen and specimen repaired by carbon fiber composite patch. The comparison between numerical and experimental results showed good agreement between them and proved the accuracy of numerical modeling.