• Title/Summary/Keyword: composite power

Search Result 1,092, Processing Time 0.03 seconds

Heat Performance of Rapid Hardening Nano-Cementitious Composite for Repairing of Concrete Structures (콘크리트 구조물 보수를 위한 초속경 나노-시멘트 복합체의 발열성능)

  • Cho, Sanghyeon;Lee, Heeyoung;Yu, Wonjun;Kim, Donghwi;Chung, Wonseok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.421-428
    • /
    • 2020
  • Recently, excellent thermal and electrical performance of cementitious composites by mixing nano materials are being studied. The purpose of this study is to research the heat generation and power consumption of rapid hardening nano-cementitious composites. The experiment was carried out after setting the rapid hardening cementitious material, curing day, and supply voltage as parameters. Rapid hardening nano-cementitious materials were classified into cement paste, mortar, and concrete The heat performance of all rapid hardening nano-cementitious composites in curing 1 day has increased over 10℃. The rapid hardening nano-cementitious composites can exhibit heat performance within 1 day. The heat performance of the rapid hardening nano-cementitious composites is maintained after 28 days.

Design of a Low Phase Noise Voltage Tuned Planar Composite Resonator Oscillator Using SIW Structure (SIW 구조를 이용한 저 위상잡음 전압 제어 평판형 복합공진기 발진기 설계)

  • Lee, Dong-Hyun;Son, Beom-Ik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.515-525
    • /
    • 2014
  • In this paper, we present a design and implementation of a Voltage-tuned Planar Composite Resonator Oscillator(Vt-PCRO) with a low phase noise. The designed Vt-PCRO is composed of a resonator, two phase shifters, and an amplifier. The resonator is designed using a dual mode SIW(Substrate Integrated Waveguide) resonator and has a group delay of about 40 nsec. Of the two phase shifters (PS1 and PS2), PS1 with a phase shift of $360^{\circ}$ is used for the open loop gain to satisfy oscillation condition without regard to the electrical lengths of the employed microstrip lines in the loop. PS2 with a phase shift of about $70^{\circ}$ is used to tune oscillation frequency. The amplifier is constructed using two stages to compensate for the loss of the open loop. Through the measurement of the open loop gain, the tune voltage of the PS1 can be set to satisfy the oscillation condition and the loop is then closed to form the oscillator. The oscillator with a oscillation frequency of 5.345 GHz shows a phase noise of -130.5 dBc/Hz at 100 kHz frequency offset. The oscillation power and the electrical frequency tuning range is about 3.5 dBm and about 4.2 MHz for a tuning voltage of 0~10 V, respectively.

Preparation of flexible energy storage device based on reduced graphene oxide (rGO)/conductive polymer composite (환원된 그래핀 옥사이드/전도성 고분자 복합체를 이용한 플렉시블 에너지 저장 매체의 개발)

  • Jeong, Hyeon Taek;Cho, Jae Bong;Kim, Jang Hun;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.280-288
    • /
    • 2017
  • Nanocarbon base materials such as, graphene and graphene hybrid with high electrochemical performances have great deal of attention to investigate flexible, stretchable display and wearable electronics in order to develop portable and high efficient energy storage devices. Battery, fuel cell and supercapacitor are able to achieve those properties for flexible, stretchable and wearable electronics, especially the supercapacitor is a promise energy storage device due to their remarkable properties including high power and energy density, environment friendly, fast charge-discharge and high stability. In this study, we have fabricated flexible supercapacitor composed of graphene/conductive polymer composite which could improve its electrochemical performance. As a result, specific capacitance value of the flexible supercapacitor (unbent) was $198.5F\;g^{-1}$ which decreased to $128.3F\;g^{-1}$ (65% retention) after $500^{th}$ bending cycle.

Sorptive Removal of Radionuclides (Cobalt, Strontium and Cesium) using AMP/IO-PAN Composites (AMP/IO-PAN 복합체를 이용한 방사성 핵종(코발트, 스트론튬, 세슘)의 흡착 제거)

  • Park, Younjin;Kim, Chorong;Shin, Won Sik;Choi, Sang-June
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.259-269
    • /
    • 2013
  • Applicability of ammonium molybdophosphate/iron oxides-polyacrylonitrile (AMP/IO-PAN) composites on the removal of radionuclides in the radioactive wastewater generated from nuclear power plants was investigated. The composites were characterized using the following analytical techniques: X-ray diffraction (XRD), Fourior transform-infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), particle size analyzer (PSA), nitrogen adsorption-desorption and magnetic property measurement system (MPMS). 10wt% of AMP/IO-PAN composite has a saturation magnetization of 2.038 emu/g. Single-solute sorptions of Co, Sr and Cs onto 10wt% of AMP/IO-PAN composite were investigated. The maximum sorption capacities ($Q^0$) predicted by the Langmuir model on 10wt% of AMP/IO-PAN composite were 0.097, 0.086 and 0.66 mmol/g for Co, Sr and Cs, respectively. The maximum sorption capacities ($Q^0$) of Cs predicted by Langmuir model on 0, 10, 20 and 30wt% of AMP/IO-PAN composites were 0.702, 0.655, 0.602 and 0.559 mmol/g, respectively. The maximum sorption capacities ($Q^0$) of Cs decreased with increasing the iron oxide content in the AMP/IO-PAN composites.

A Study on the Manufacturing, Mechanical Properties,Abrasion Resistance, and Slow Crack Growth Resistance of the Recycled Polyethylene/Fly Ash Composites (재생 폴리에틸렌/비산회 분말 충전 복합체 제조와 기계적 물성, 내마모성 및 저속균열성장 저항성에 관한 연구)

  • Kye, Hyoung-San;Shin, Kyung-Chul
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.335-342
    • /
    • 2011
  • The virgin and recycled polyethylene composites with various ratio of fly ash were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of fly ash from power plant and post-consumed polyethylene. Fly ash were blended with virgin HDPE and recycled polyethylene at the weight fraction of 0 to 40 wt.%. Mechanical properties such as yield strength, abrasion resistance, and slow crack resistance were measured with ISO and ASTM standards. The experimental results for the various composites showed that the elongation at break and the yield stress of the composites decreased with increasing fly ash contents. Generally, the abrasion resistance of PEs decreased with increasing sandpaper grits but the abrasion resistance of the composites increased with fly ash content at finer abrasive surface. The slow crack growth resistance of virgin HDPE, recycled JRPE and the JRPE composite showed higher slow crack growth resistance up to 50% of load at notch depth of 20% and 30%, but KRPE and the KRPE composite showed much lower resistance than virgin HDPE, JRPE and the JRPE composite. Time to break, measured with NCLS test method, of all PEs and the composites satisfies the regulation of Korean Industrial Specification for sewer pipe and support application.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF

Pervaporation of Butanol from their Aqueous Solution using a PDMS-Zeolite Composite Membrane (PDMS-Zeolite 복합막을 이용한 부탄올 투과증발)

  • Kong, Chang-In;Cho, Moon-Hee;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.816-822
    • /
    • 2011
  • Pervaporation is known to be a low energy consumption process since it needs only an electric power to maintain the permeate side in vacuum. Also, the pervaporation is an environmentally clean technology because it does not use the third material such as an entrainer for either an azeotropic distillation or an extractive distillation. In this study, Silicalite-1 particles are hydrothermally synthesized and polydimethylsiloxane(PDMS)-zeolite composite membranes are prepared with a mixture of synthesized Silicalite-1 particles and PDMS-polymer. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the weight % of Silicalite-1 particles in the membrane. A 1,000 $cm^3$ aqueous solution containing butanol of low mole fraction such as order of 0.001 was used as a feed to the membrane cell while the pressure of the permeation side was kept about 0.2~0.3 torr. When the butanol concentration in the feed solution was 0.015 mole fraction, the flux of n-butanol significantly increased from 14.5 g/ $m^2$/hr to 186.3 g/$m^2$/hr as the Silicalite-1 content increased from 0 wt% to 10 wt%, indicating that the Silicalite-1 molecular sieve improved the membrane permselectivity from 4.8 to 11.8 due to its unique crystalline microporous structure and its strong hydrophobicity. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.07 to 0.15 mole fraction. This composite membrane could be potentially appliable for separation of n-butanol from insitu fermentation broth where n-butanol is produced at a fairly low concentration of 0.015 mole fraction.

A Study on the Surface-Modification of Barium Sulfate/TiO$_2$/Dimethicone Composite Powder and its Application in Color Cosmetics (바륨설페이트/티타늄디옥사이드/디메치콘의 복합화 및 메이크업에서의 응용)

  • Kyung-Ho, Choi;Seung-Yong, Ko;Hak-Hee, Kang;Ok-Sub, Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.197-200
    • /
    • 2004
  • Sensor and optical properties have become critical features in powder foundation. The flaky barium sulfate powder shows good smooth texture, adhesion and natural looking characteristics. However, it has limitations abilities in UV shielding, hiding and blooming effect. Thus we adopt TiO$_2$ that has excellent hiding power and blooming effect as well as UV shielding ability, but TiO$_2$ has still intrinsic problems in dispersion and texture. To overcome this disadvantages, the barium sulfate/TiO$_2$/dimethicone composite powder was prepared. The flaky barium sulfate powder was coated with TiO$_2$ in nanoscale and followed by coated with dimethicone. When this surface-modified powder was applied for make-up cosmetics, especially in powder foundation, the powder gave powder foundation more good characteristics than the original flaky barium sulfate, Ti02 powder, dimethicone in abovementioned optical and sensory properties. To characterize the distinctive features of this surface-modified powder, we measured its characteristics with UV in vitro tester, hiding powder test method, goniophotometer, consumer panel test and so on.

Debt Issuance and Capacity of Korean Retail Firms (유통 상장기업들의 부채변화에 관한 연구)

  • Lee, Jeong-Hwan;Son, Sam-Ho
    • Journal of Distribution Science
    • /
    • v.13 no.9
    • /
    • pp.47-57
    • /
    • 2015
  • Purpose - The aim of this paper is to investigate the explanatory power of the Pecking-order theory (the cost of financing increases with asymmetric information) among Korean retail firms from the perspective of debt capacity. According to the Pecking-order theory, a firm's first preference is to use internal funds for its capital needs, its next preference is the issuance of debt, and its last preference is the issuance of equity; this is due to the information asymmetry problem between existing shareholders and investors. However, prior empirical studies, such as Lemmon and Zender (2010), argue that the entire sample test for the Pecking-order theory could be misleading due to the different levels of debt issuance capability of each of the individual firms; in fact, they confirm that the explanatory power of the Pecking-order theory improves after taking into account the differences in debt capacity of the U.S. firms they examined. This paper implements a case study approach among Korean retail firms to examine the relationship between debt capacity and the explanatory power of the Pecking-order theory in Korea. Research design, data, and methodology - This study uses the sample of public retail firms on the Korea Composite Stock Price Index (KOSPI) from the time period of 1990 to 2013. We gather related financial and accounting statements from the financial information firm WISEfn. Credit rating information is provided by the Korea Investor Service. We employ the models of Lemmon and Zender (2010) and Son and Kim (2013) to measure a firm's debt capacity. Their logit models use the rating dummy variable as a dependent variable and incorporate other firm characteristics as independent variables to estimate debt capacity. To test the Pecking-order theory, we adopt variants of the financing deficit model of Shyam-Sunder and Myers (1999). In the test of the Pecking-order theory, we consider all of the changes in total debt obligations, current debt obligations, and long-term debt obligations. Results - Our main contribution to the literature is our confirmation of the predicted relationship between debt capacity and the explanatory power of the Pecking-order theory among Korean retail firms. The coefficients on financing deficits become greater as a firm's debt capacity improves. This is consistent with the results of Lemmon and Zender (2010). The coefficients on the square of the financing deficits are also negative for the firms in the largest debt capacity group, which is also consistent with the predictions in prior literature. Conclusions - This study takes a case study approach by examining Korean retail firms. We confirm that the Pecking-order theory explains the capital structure of retail firms more appropriately, after taking into account the debt capacity of each firm. This result suggests the importance of debt capacity consideration in the testing of the Pecking-order theory. Our result also implies that there has been a potential underestimation of the explanatory power of the Pecking-order theory in existing studies.

A Feedback Wideband CMOS LNA Employing Active Inductor-Based Bandwidth Extension Technique

  • Choi, Jaeyoung;Kim, Sanggil;Im, Donggu
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.55-61
    • /
    • 2015
  • A bandwidth-enhanced ultra-wide band (UWB) CMOS balun-LNA is implemented as a part of a software defined radio (SDR) receiver which supports multi-band and multi-standard. The proposed balun-LNA is composed of a single-to-differential converter, a differential-to-single voltage summer with inductive shunt peaking, a negative feedback network, and a differential output buffer with composite common-drain (CD) and common-source (CS) amplifiers. By feeding the single-ended output of the voltage summer to the input of the LNA through a feedback network, a wideband balun-LNA exploiting negative feedback is implemented. By adopting a source follower-based inductive shunt peaking, the proposed balun-LNA achieves a wider gain bandwidth. Two LNA design examples are presented to demonstrate the usefulness of the proposed approach. The LNA I adopts the CS amplifier with a common gate common source (CGCS) balun load as the S-to-D converter for high gain and low noise figure (NF) and the LNA II uses the differential amplifier with the ac-grounded second input terminal as the S-to-D converter for high second-order input-referred intercept point (IIP2). The 3 dB gain bandwidth of the proposed balun-LNA (LNA I) is above 5 GHz and the NF is below 4 dB from 100 MHz to 5 GHz. An average power gain of 18 dB and an IIP3 of -8 ~ -2 dBm are obtained. In simulation, IIP2 of the LNA II is at least 5 dB higher than that of the LNA I with same power consumption.