• Title/Summary/Keyword: composite panels

Search Result 394, Processing Time 0.03 seconds

Influence of ECC ductility on the diagonal tension behavior (shear capacity) of shear-wall panel (ECC (Engineered Cementitious Composite)의 연성이 전단벽의 사인장 거동에 미치는 영향)

  • Ha Gee-Joo;Shin Jong-Hack;Kim Yun Yong;Kim Jeong-Su;Kim Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.321-324
    • /
    • 2005
  • This paper presents a preliminary study on the influence of material ductility on diagonal tension behavior of shear-wall panels. There have been a number of previous studies, which suggest that the use of high ductile material such as ECC (Engineered Cementitious Composite) significantly enhanced shear capacity of structural elements even without shear reinforcements involved. The present study emphasizes increased shear capacity of shear-wall panels by employing a unique strain-hardening ECC reinforced with poly(vinyl alcohol) (PVA) short random fibers. Normal concrete was adopted as the reference material. Experimental investigation was performed to assess the failure mode of shear-wall panels subjected to knife-edge loading. The results from experiments show that ECC panels exhibit a more ductile failure mode and higher shear capacity when compared to ordinary concrete panels. The superior ductility of ECC was clearly reflected by micro-crack development, suppressing the localized drastic fracture typically observed in concrete specimen. This enhanced structural performance indicates that the application of ECC for a in-filled frame panel can be effective in enhancing seismic resistance of an existing frame in service.

  • PDF

Physical and Mechanical Properties of Composite Panel Manufactured from Wood Particle and Recycled Polyethylene (목재 파티클과 재생폴리에틸렌을 이용한 목질복합패널의 물리·기계적 성질)

  • Han, Tae-Hyung;Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.340-348
    • /
    • 2009
  • The recycled polyethylene was used for making wood-plastic composite panels. In this experiment, the sizes of wood particles used were 1/32", 1/4" and 1/2" in mesh number, and the contents of the recycled polyethylene were 10%, 30% and 50%. The physical and mechanical properties of the composite panels were investigated. At a given content of recycled polyethylene, the density of composite panel decreases with the increase of wood particle size. The thickness swelling and water adsorption decrease with the increase of recycled polyethylene, where significantly lower at 10%, compared with at 30%. In the water soaking experiment for 14 days, the dimensional stability of composite panel appeared good in the composite panel with recycled polyethylene content of 30% or higher. As the content of recycled polyethylene increases, the internal bonding strength and the modulus of rupture in bending strength increases. In SEM, the molten recycled polyethylene showed interlocking action through its penetration into tracheid openings including pits as well as binder between wood particles as the matrix material, thus increasing bonding strength and improving the physical and mechanical properties of composite panel.

Behavior of light weight sandwich panels under out of plane bending loading

  • Ganapathi, S. Chitra;Peter, J. Annie;Lakshmanan, N.;Iyer, N.R.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.775-789
    • /
    • 2016
  • This paper presents the flexural behavior & ultimate strength performance of innovative light weight sandwich panels of size $3{\times}1.2m$ with two different solidity ratios viz. 0.5 and 0.33 under out of plane bending load. From the experimental studies, it is observed that the flexural strength and the stiffness are increased by about 46% and five folds for lesser solidity ratio case. From the measured strains of the shear connectors, full shear transfer between the concrete wythes is observed. The yielding occurred approximately at 4% and 0.55% of the ultimate deformation for 100 mm & 150 mm thick panels, which shows the large ductility characteristics of the panels. From the study, it is inferred that the light weight sandwich panels behave structurally in a very similar manner to reinforced concrete panels. Further from the numerical study, it is observed that the numerical values obtained by FE analysis are in good agreement with the experimental observations.

Undamped Forced Vibration Response of Curved Composite Panels using Enhanced Assumed Strain Finite Element-Direct Integration Method (추가변형률 유한요소-직접적분법을 이용한 복합적층 곡선패널의 비감쇠 강제진동응답)

  • Park, Won-Tae;Chun, Kyoung-Sik;Son, Byung-Jik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.247-258
    • /
    • 2004
  • The composite shell element is developed for the solution of undamped forced vibration problem of composite curved panels. The finite element used in the current study is an 4-node enhanced assumed shell element with six degrees of freedom per node. The composite shell element is free of both shear and membrane locking phenomenon by using the enhanced assumed strain(EAS) method. A modification to the first-order shear deformation shell theory is proposed, which results in parabolic thorough-thickness distribution of the transverse shear strains and stresses. It eliminates the need for shear correction factors in the first order theory. Newmark's direct integration technique is used for carrying out the integration of the equation motion, to obtain the repones history. Parametric studies of curved composite panels are carried out for forced vibration analysis by geometrical shapes and by laminated composite; such as fiber orientation, stacking sequence.

Study of the Perfomance Estimation for (Semi)Incombustible Composite ((준)불연성 복합재료의 성능 평가 연구)

  • 조정미;장기욱;김규직
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.97-101
    • /
    • 2001
  • Composite materials have been applied widely in interior panels of buildings and transport vehicles. Recently good fire performance and weight reduction are key issues in the fields. In the present study we investigated effects of processing parameters on the performance of honeycomb sandwich panels, especially peel strength of the panel and fire performance. The processing parameters considered were types of matrix resin, resin contents, panel cure conditions, and surface painting process conditions. The results showed that the higher resin content provides the better peel strength. Controled cure steps are also needed to obtain good pee] strength. Paint processing parameters including base putty thickness and paint drying conditions and paint thickness are important to obtain good paint adhesion and good fire performance.

  • PDF

Low-velocity Impact Damdage Monitoring for Laminate Composite panels Using PVDF Sensor Signals and Acoustics Emission Signals (압전센서와 음향방출신호를 이용한 적층복합재 판재에 대한 저속 충격손상 모니터링)

  • Kim, Hyoung-Il;Kim, Jin-Won;Kim, In-Gul
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.27-30
    • /
    • 2005
  • This paper studied the PVDF(polyvinylidene fluoride) and Acoustic Emission sensors characteristics of the laminated composite panels under the low velocity impact. The various impact test by changing impact height is performed on the instrumented drop weight impact tester. The STFT(short time Fourier transform) and WT(wavelet transform) are used to decompose the each sensor signals. A ultrasonic C-scan and digital scope are used to define damaged area in each case. The test result indicated that the individual sensor signals involve the damage initiation and development.

  • PDF

Structural Characteristics of 스냅핏 Type Composite Deck Panel (착탈결구식 연결구조 복합소재 데크의 거동특성 분석)

  • Lee Sung-Woo;Jeong Gyu-Sang;Cho Sung-Hwan;Sim Young-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.719-724
    • /
    • 2006
  • Owing to its special features of light weight, high durability, corrosion-resistant, composite material used in civil infrastructure can not only solve fundamental problems of deterioration and corrosion, but also reduce both construction and maintenance cost significantly. Composite deck panels of 스냅핏 type connection previously designed and fabricated have been redesigned herein. The sensitivity of gaps between snap-fits and tip angles was investigated. Stacking sequence of plies was scrutinized in order to facilitate pultrusion process. Deck panels of redesigned configuration due to bending has been analyzed. A comparison between the preliminary and modified deck design has been made.

  • PDF

Fatigue Properties of Glass Fiber Reinforced Polymer Composite Panels (유리섬유보강 폴리머 복합패널의 피로특성)

  • Yeon, Kyu-Seok;Kim, Soo-Bo;Ryu, Neung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.29-36
    • /
    • 2004
  • In this study, The fatigue properties of the GFRP composite panels of which core was made of the polymer mortar and both facings were reinforced by the high-tensile GFRP were surveyed. Composite-panel specimens consisted of polymer mortar core and GFRP compressive and tensile sides with various thickness were produced for an experimental study. Flexural fatigue tests were conducted to examine the correlation between the fatigue load and the fatigue life for various thickness of core and facings, and its results are presented. The correlation obtained in this study between the fatigue load and the fatigue life for various thickness arc in good agreement with the modified Miner's law.

The Stacking Sequence Optimization of Stiffened Laminated Curved Panels with Different Loading and Stiffener Spacing

  • Kim Cheol;Yoon In-Se
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1541-1547
    • /
    • 2006
  • An efficient procedure to obtain the optimal stacking sequence and the minimum weight of stiffened laminated composite curved panels under several loading conditions and stiffener layouts has been developed based on the finite element method and the genetic algorithm that is powerful for the problem with integer variables. Often, designing composite laminates ends up with a stacking sequence optimization that may be formulated as an integer programming problem. This procedure is applied for a problem to find the stacking sequence having a maximum critical buckling load factor and the minimum weight. The object function in this case is the weight of a stiffened laminated composite shell. Three different types of stiffener layouts with different loading conditions are investigated to see how these parameters influence on the stacking sequence optimization of the panel and the stiffeners. It is noticed from the results that the optimal stacking sequence and lay-up angles vary depending on the types. of loading and stiffener spacing.

Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, AMS
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.63-74
    • /
    • 2020
  • The present research investigates post-buckling behavior of geometrically imperfect tapered curved micro-panels made of graphene oxide powder (GOP) reinforced composite. Micro-scale effects on the panel structure have been included based on strain gradient elasticity. Micro-panel is considered to be tapered based on thickness variation along longitudinal direction. Weight fractions of uniformly and linearly distributed GOPs are included in material properties based on Halpin-Tsai homogenization scheme considering. Post-buckling curves have been determined based on both perfect and imperfect micro-panel assumptions. It is found that post-buckling curves are varying with the changes of GOPs weight fraction, geometric imperfection, GOP distribution type, variable thickness parameters, panel curvature radius and strain gradient.