• 제목/요약/키워드: composite model deck

검색결과 61건 처리시간 0.023초

Experimental and numerical study on shear studs connecting steel girder and precast concrete deck

  • Xia, Ye;Chen, Limu;Ma, Haiying;Su, Dan
    • Structural Engineering and Mechanics
    • /
    • 제71권4호
    • /
    • pp.433-444
    • /
    • 2019
  • Shear studs are often used to connect steel girders and concrete deck to form a composite bridge system. The application of precast concrete deck to steel-concrete composite bridges can improve the strength of decks and reduce the shrinkage and creep effect on the long-term behavior of structures. How to ensure the connection between steel girders and concrete deck directly influences the composite behavior between steel girder and precast concrete deck as well as the behavior of the structure system. Compared with traditional multi-I girder systems, a twin-I girder composite bridge system is more simplified but may lead to additional requirements on the shear studs connecting steel girders and decks due to the larger girder spacing. Up to date, only very limited quantity of researches has been conducted regarding the behavior of shear studs on twin-I girder bridge systems. One convenient way for steel composite bridge system is to cast concrete deck in place with shear studs uniformly-distributed along the span direction. For steel composite bridge system using precast concrete deck, voids are included in the precast concrete deck segments, and they are casted with cast-in-place concrete after the concrete segments are erected. In this paper, several sets of push-out tests are conducted, which are used to investigate the heavier of shear studs within the voids in the precast concrete deck. The test data are analyzed and compared with those from finite element models. A simplified shear stud model is proposed using a beam element instead of solid elements. It is used in the finite element model analyses of the twin-I girder composite bridge system to relieve the computational efforts of the shear studs. Additionally, a parametric study is developed to find the effects of void size, void spacing, and shear stud diameter and spacing. Finally, the recommendations are given for the design of precast deck using void for twin I-girder bridge systems.

Flexural performances of deep-deck plate slabs: Experimental and numerical approaches

  • Inwook Heo;Sun-Jin Han;Khaliunaa Darkhanbat;Seung-Ho Choi;Sung Bae Kim;Kang Su Kim
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.313-325
    • /
    • 2024
  • This work presents experimental and numerical investigations on the flexural performances of composite deep-deck plate slabs. Seven deep-deck plate slab specimens with topping concrete were fabricated; the height of the topping slab as well as presence and type of shear connector were set as the main variables to perform bending experiments. The flexural behaviors of the specimens and composite behaviors of the deck plate and concrete were analyzed in detail. The contributions of the deck plate to the flexural stiffness and strength of the slab were identified through finite element (FE) analysis. FE analysis was carried out using the validated FE model by considering the varying bond strengths of the deck plates and concrete, thickness of the deck plate, and types and spacings of the shear connectors. Based on the results, the degree of composite of the deep-deck plate was examined, and a flexural strength equation for the composite deck plate slabs was proposed.

진공성형제작 복합소재 바닥판 모델의 휨특성분석 (Flexural Characteristics of Composite Deck Model Fabricated with VARTM)

  • 이성우;주성애
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.130-133
    • /
    • 2001
  • Recent days composite bridge deck is gaining attraction due to many advantages such as light weight, high strength, corrosion resistance, and high durability. In this study, composite sandwich deck models of hat, box, and triangular section type were fabricated by VARTM process. For those models, three point flexural test was carried out both in strong and weak axis. The experimental results are compared with each other to determine efficient section type. Also finite element analysis was performed to verify analysis model. It is demonstrated that the results of numerical analysis agree well with experimental results.

  • PDF

Analysis of concrete shrinkage along truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • 제20권6호
    • /
    • pp.1237-1257
    • /
    • 2016
  • The paper concerns analysis of effects of shrinkage of slab concrete in a steel-concrete composite deck of a through truss bridge span. Attention is paid to the shrinkage alongside the span, i.e., transverse to steel-concrete composite cross-beams. So far this aspect has not been given much attention in spite of the fact that it affects not only steel-concrete decks of bridges but also steel-concrete floors of steel frame building structures. For the problem analysis a two-dimensional model is created. An analytical method is presented in detail. A set of linear equations is built to compute axial forces in members of truss girder flange and transverse shear forces in steel-concrete composite beams. Finally a case study is shown: test loading of twin railway truss bridge spans is described, verified FEM model of the spans is presented and computational results of FEM and the analytical method are compared. Conclusions concerning applicability of the presented analytical method to practical design are drawn. The presented analytical method provides satisfactory accuracy of results in comparison with the verified FEM model.

진공성형 제작 모델 복합소재 바닥판의 실험적 휨 거동특성 분석 (Flexural Characteristics of Model Composite Deck Fabricated with VARTM)

  • 이성우
    • 한국전산구조공학회논문집
    • /
    • 제18권4호통권70호
    • /
    • pp.417-426
    • /
    • 2005
  • 최근 경량, 고강도, 내부식, 고내구성 특성 등의 여러 가지 이점이 있는 복합소재 교량 바닥판에 대한 관심이 고조되고 있다. 본 연구에서는 유리섬유와 불포화 폴리에스터를 사용하여 진공성형제조기법으로 파형코어 복합소재 모델 바닥판을 제작하였다. 모델 바닥판은 제형, 박스형, 삼각형 단면을 고려하였고, 각각 강축과 약축에 대한 시험 모델에 대하여 3점 휨 시험을 실시하였다. 시험 결과로부터 얻은 하중-변위곡선, 하중-변형률 곡선, 파괴모드 등을 분석하여 복합소재 바닥판의 휨 거동특성을 파악하고자 하였으며, 파형코어 복합소재 바닥판을 교량 바닥판으로 적용할 수 있는 가능성을 검토하였다. 또한 등가 중량으로 환산한 강축과 약축 모델에 대해 휨 거동 특성을 비교하여 가장 효과적이고 경제적인 단면을 찾고자 하였다.

교량용 강ㆍ콘크리트 합성 바닥판의 단위모델에 대한 비선형 해석 (A Nonlinear Analysis on the Unit Model of Steel-Concrete Hybrid Deck for Bridges)

  • 정광회;정연주;구현본;김정호;김병석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.85-91
    • /
    • 2003
  • This paper presents a 3D nonlinear analysis with slip in steel-concrete hybrid deck. In this study, it was founded that the limit slip modulus could classify the states of steel-concrete hybrid deck into three parts as full-composite, partial-composite, and non-composite, considering the longitudinal behavior and end-slip as well as the yield load and ultimate load of it. Also, it proved that the stress of lower steel plate at the support was increased, because of frictional forces by reaction forces in the steel-concrete hybrid deck. The end-slip did not occur near the full-composite state, but it was largely increased as the slip modulus decreased. On the basis of the EC 4, the state of steel-concrete hybrid deck classified into brittle behavior and ductile one using the end-slip of it

  • PDF

유리섬유 복합소재 데크의 휨 거동 특성 (Flexural Characteristics of GFRP Composite Deck)

  • 주성애;이성우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.189-196
    • /
    • 2001
  • Recent days composite bridge deck is gaining attraction due to many advantages such as light weight, high strength, corrosion resistance, and high durability. In this study, composite sandwich deck models of hat, box, and triangular section type were fabricated by VARTM process. For those models, three point flexural test was carried out both in strong and weak axis. The experimental results are compared with each other to determine efficient section type. Also finite element analysis was performed and compared with experiments to verify analysis model. It has been demonstrated that composite sandwich deck can be used as bridge deck in the new construction and rehabilitation work.

  • PDF

Machine learning-based probabilistic predictions of shear resistance of welded studs in deck slab ribs transverse to beams

  • Vitaliy V. Degtyarev;Stephen J. Hicks
    • Steel and Composite Structures
    • /
    • 제49권1호
    • /
    • pp.109-123
    • /
    • 2023
  • Headed studs welded to steel beams and embedded within the concrete of deck slabs are vital components of modern composite floor systems, where safety and economy depend on the accurate predictions of the stud shear resistance. The multitude of existing deck profiles and the complex behavior of studs in deck slab ribs makes developing accurate and reliable mechanical or empirical design models challenging. The paper addresses this issue by presenting a machine learning (ML) model developed from the natural gradient boosting (NGBoost) algorithm capable of producing probabilistic predictions and a database of 464 push-out tests, which is considerably larger than the databases used for developing existing design models. The proposed model outperforms models based on other ML algorithms and existing descriptive equations, including those in EC4 and AISC 360, while offering probabilistic predictions unavailable from other models and producing higher shear resistances for many cases. The present study also showed that the stud shear resistance is insensitive to the concrete elastic modulus, stud welding type, location of slab reinforcement, and other parameters considered important by existing models. The NGBoost model was interpreted by evaluating the feature importance and dependence determined with the SHapley Additive exPlanations (SHAP) method. The model was calibrated via reliability analyses in accordance with the Eurocodes to ensure that its predictions meet the required reliability level and facilitate its use in design. An interactive open-source web application was created and deployed to the cloud to allow for convenient and rapid stud shear resistance predictions with the developed model.

주형과 상판과의 상호작용이 단순 사교의 동적거동에 미치는 영향 (Effects of Interactions between the Concrete Deck and Steel Girders on the Dynamic Behavior of Simply Supported Skew Bridges)

  • 문성권
    • 한국전산구조공학회논문집
    • /
    • 제20권5호
    • /
    • pp.593-604
    • /
    • 2007
  • 합성형 사교는 비합성형 사교에 비해 역학적 측면에서 큰 장점을 지니고 있는 것이 사실이지만 사각이 심한 사교들의 경우 합성형 사교에 매우 큰 상판응력이 유발될 가능성이 있어 종종 이들 사교들에 대한 비합성형 설계가 검토되어지곤 한다. 본 연구에서는 동적해석이 가능한 비합성형 사교의 해석모델을 제안하고 이 해석모델들을 이용하여 사교들에 대한 비합성형의 적용 타당성을 검토하였다. 또한 주형과 상판과의 세 가지 상호작용(합성작용, 부분합성작용, 비합성작용)이 단순 판형사교들의 동적특성과 동적거동에 미치는 영향을 조사하였다. 주형간격, 사각, 상판 종횡비를 매개변수로 총 27개의 판형 사교들에 대한 일련의 연구를 수행하였다. 상판과 주형 경계면에서의 미끄러짐은 고유진동주기가 길어지는 현상을 유발하여 사교의 교축직각방향에 작용하는 전체밑면전단력의 크기를 감소시킬 수도 있지만 모드형장과 강성분포에 큰 영향을 미쳐 바람직하지 않은 사교 거동을 유발할 수도 있다. 부분합성작용의 최소 규정에 따라 설치된 전단연결재는 주형응력과 상판응력을 감소시키는 효과가 있다. 즉, 몇몇 사교의 경우를 제외하고는 전반적으로 부분합성형으로부터 구한 주형응력과 상판응력의 크기는 합성형 사교로부터 구한 관련 응력들의 크기와 유사하거나 약간 크게 나타난다.

Shear-lag effect in twin-girder composite decks

  • Dezi, Luigino;Gara, Fabrizio;Leoni, Graziano
    • Steel and Composite Structures
    • /
    • 제3권2호
    • /
    • pp.111-122
    • /
    • 2003
  • The paper presents a model for analysing the shear-lag effect on the slab of twin-girder composite decks subjected to static actions, support settlements and concrete shrinkage, which are the main actions of interest in composite bridge design. The proposed model includes concrete creep behaviour and shear connection flexibility. The shear-lag in the slab is accounted for by means of a new warping function. The considered actions are then applied to a realistic bridge deck and their effects are discussed. The proposed method is utilised to determine the slab effective widths for three different width-length ratios of the deck. Finally, a comparison between the results obtained with the Eurocode EC4-2 and those obtained with the proposed model is performed.