• Title/Summary/Keyword: composite model

Search Result 3,648, Processing Time 0.034 seconds

Probabilistic-based assessment of composite steel-concrete structures through an innovative framework

  • Matos, Jose C.;Valente, Isabel B.;Cruz, Paulo J.S.;Moreira, Vicente N.
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1345-1368
    • /
    • 2016
  • This paper presents the probabilistic-based assessment of composite steel-concrete structures through an innovative framework. This framework combines model identification and reliability assessment procedures. The paper starts by describing current structural assessment algorithms and the most relevant uncertainty sources. The developed model identification algorithm is then presented. During this procedure, the model parameters are automatically adjusted, so that the numerical results best fit the experimental data. Modelling and measurement errors are respectively incorporated in this algorithm. The reliability assessment procedure aims to assess the structure performance, considering randomness in model parameters. Since monitoring and characterization tests are common measures to control and acquire information about those parameters, a Bayesian inference procedure is incorporated to update the reliability assessment. The framework is then tested with a set of composite steel-concrete beams, which behavior is complex. The experimental tests, as well as the developed numerical model and the obtained results from the proposed framework, are respectively present.

Statistical Life Prediction of Fatigue Crack Growth for SiC Whisker Reinforced Aluminium Composite (SiC 휘스커 보강 Al6061 복합재료의 통계학적 피로균열진전 수명예측)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.475-485
    • /
    • 1995
  • In this study, statistical analysis of fatigue data which had obtained from respective 24 fatigue crack, was examined for SiC whisker reinforced aluminium 6061 composite alloy (SiC$_{w}$/A16061) and aluminium 6061 alloy. SiC volume fraction in composite alloy is 25%. The analysis results stress intensity factor range and 0.1 mm fatigue crack initiation life for SiC$_{w}$/A16061 composite & A16061 matrix are the log-normal distribution. And regression analysis by linear model, exponential model and multiplicative model were performed to find out the relationship between fatigue crack growth rate(da/dN) and stress intensity for find out the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(.DELTA.K) in the SiC$_{w}$/A16061 composite and examine the applicability of Paris' equation to SiC$_{w}$A16061 composite. Also computer simulation was performed for fatigue life prediction of SiC$_{w}$/A16061 composite using the statistical results of this study.udy.

Behavior of steel-concrete composite cable anchorage system

  • Gou, Hongye;Wang, Wei;Shi, Xiaoyu;Pu, Qianhui;Kang, Rui
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.115-123
    • /
    • 2018
  • Steel-concrete composite structure is widely applied to bridge engineering due to their outstanding mechanical properties and economic benefit. This paper studied a new type of steel-concrete composite anchorage system for a self-anchored suspension bridge and focused on the mechanical behavior and force transferring mechanism. A model with a scale of 1/2.5 was prepared and tested in ten loading cases in the laboratory, and their detailed stress distributions were measured. Meanwhile, a three-dimensional finite element model was established to understand the stress distributions and validated against the experimental measurement data. From the results of this study, a complicated stress distribution of the steel anchorage box with low stress level was observed. In addition, no damage and cracking was observed at the concrete surrounding this steel box. It can be concluded that the composite effect between the concrete surrounding the steel anchorage box and this steel box can be successfully developed. Consequently, the steel-concrete composite anchorage system illustrated an excellent mechanical response and high reliability.

Postbuckling and nonlinear vibration of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.17-29
    • /
    • 2018
  • The thermal effects on the buckling, postbuckling and nonlinear vibration behaviors of composite laminated trapezoidal plates are studied. Aiming at the complex plate structure and to simulate the temperature distribution of the plate, a finite element method (FEM) is applied in this paper. In the temperature model, based on the thermal diffusion equation, the Galerkin's method is employed to establish the temperature equation of the composite laminated trapezoidal plate. The geometrical nonlinearity of the plate is considered by using the von Karman large deformation theory, and combining the thermal model and aeroelastic model, Hamilton's principle is employed to establish the thermoelastic equation of motion of the composite laminated trapezoidal plate. The thermal buckling and postbuckling of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results reported in the literature. Moreover, the effects of the temperature with the ply-angle on the thermal buckling and postbuckling of the composite laminated trapezoidal plates are studied, the thermal effects on the nonlinear vibration behaviors of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are also presented for the different temperatures and ply angles.

A study of fracture of a fibrous composite

  • Mirsalimov, Vagif M.;Hasanov, Shahin H.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.585-598
    • /
    • 2020
  • We develop design model within which nucleation and propagation of crack in a fibrous composite is described. It is assumed that under loading, crack initiation and fracture of material happens in the composite. The problem of equilibrium of a composite with embryonic crack is reduced to the solution of the system of nonlinear singular integral equations with the Cauchy type kernel. Normal and tangential forces in the crack nucleation zone are determined from the solution of this system of equations. The crack appearance conditions in the composite are formed with regard to criterion of ultimate stretching of the material's bonds. We study the case when near the fiber, the binder has several arbitrary arranged rectilinear prefracture zones and a crack with interfacial bonds. The proposed computational model allows one to obtain the size and location of the zones of damages (prefracture zones) depending on geometric and mechanical characteristics of the fibrous composite and applied external load. Based on the suggested design model that takes into account the existence of damages (the zones of weakened interparticle bonds of the material) and cracks with end zones in the composite, we worked out a method for calculating the parameters of the composite, at which crack nucleation and crack growth occurs.

Vibration behaviour of cold-formed steel and particleboard composite flooring systems

  • AL Hunaity, Suleiman A.;Far, Harry;Saleh, Ali
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.403-417
    • /
    • 2022
  • Recently, there has been an increasing demand for buildings that allow rapid assembly of construction elements, have ample open space areas and are flexible in their final intended use. Accordingly, researchers have developed new competitive structures in terms of cost and efficiency, such as cold-formed steel and timber composite floors, to satisfy these requirements. Cold-formed steel and timber composite floors are light floors with relatively high stiffness, which allow for longer spans. As a result, they inherently have lower fundamental natural frequency and lower damping. Therefore, they are likely to undergo unwanted vibrations under the action of human activities such as walking. It is also quite expensive and complex to implement vibration control measures on problematic floors. In this study, a finite element model of a composite floor reported in the literature was developed and validated against four-point bending test results. The validated FE model was then utilised to examine the vibration behaviour of the investigated composite floor. Predictions obtained from the numerical model were compared against predictions from analytical formulas reported in the literature. Finally, the influence of various parameters on the vibration behaviour of the composite floor was studied and discussed.

Effect of core shape on debonding failure of composite sandwich panels with foam-filled corrugated core

  • Malekinejadbahabadi, Hossein;Farrokhabadi, Amin;Rahimi, Gholam H;Nazerigivi, Amin
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.467-482
    • /
    • 2022
  • One of the major failure modes in composite sandwich structures is the separation between skins and core. In this study, the effect of employing foam filled composite corrugated core on the skin/core debonding (resistance to separation between skin and core) is investigated both experimentally and numerically. To this aim, triangular corrugated core specimens are manufactured and compared with reference specimens only made of PVC foam core in terms of skin/core debonding under bending loading. The corrugated composite laminates are fabricated using the hand layup method. Also, the Vacuumed Infusion Process (VIP) is employed to join the skins to the core with greater quality. Utilizing an End Notched Shear (ENS) fixture, three point bending tests are performed on the manufactured sandwich composite panels. The results reveal that the resistance to separation capacity and flexural stiffness of sandwich composite has been increased about 170% and 76%, respectively by using a triangular corrugated core. The Cohesive Zone Model (CZM) with appropriate cohesive law in ABAQUS finite element software is used to model the progressive face/core interfaces debonding the difference between experimental and numerical results in predicting the maximum born load before the skin/core separation is about 6 % in simple core specimens and 3% in triangular corrugated core specimens.

Vibration Characterization of Cross-ply Laminates Beam with Fatigue Damage (피로 손상을 입은 직교 복합재료 적층보의 진동 특성)

  • 문태철;김형윤;황운봉;전시문;김동원;김현진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.1-4
    • /
    • 2001
  • A new non-destructive fatigue prediction model of the composite laminates is developed. The natural frequencies of fatigue-damaged laminates under extensional loading are related to the fatigue lift of the laminates by establishing the equivalent flexural stiffness reduction as a function of the elastic properties of sublaminates. The flexural stiffness is derived by relating the $90^{\circ}$-ply elastic modulus reduction, and using the laminate plate theory to the degraded elastic modulus and the intact elastic modulus of other laminate. The natural frequency reduction model, in which the dominant fatigue mode can be identified from the sensitivity scale factors of sublaminate elastic properties, provides natural frequency vs. fatigue cycle curves for the composite laminates. Vibration tests were also conducted on $[\textrm{90}_{2}\textrm{0}_{2}]_s$ carbon/epoxy laminates to verify the natural frequency reduction model. Correlations between the predictions of the model and experimental results are good.

  • PDF

Mixed finite element model for laminated composite beams

  • Desai, Y.M.;Ramtekkar, G.S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.261-276
    • /
    • 2002
  • A novel, 6-node, two-dimensional mixed finite element (FE) model has been developed to analyze laminated composite beams by using the minimum potential energy principle. The model has been formulated by considering four degrees of freedom (two displacement components u, w and two transverse stress components ${\sigma}_z$, $\tau_{xz}$) per node. The transverse stress components have been invoked as nodal degrees of freedom by using the fundamental elasticity equations. Thus, the present mixed finite element model not only ensures the continuity of transverse stress and displacement fields through the thickness of the laminated beams but also maintains the fundamental elasticity relationship between the components of stress, strain and displacement fields throughout the elastic continuum. This is an important feature of the present formulation, which has not been observed in various mixed formulations available in the literature. Results obtained from the model have been shown to be in excellent agreement with the elasticity solutions for thin as well as thick laminated composite beams. A few results for a cross-ply beam under fixed support conditions are also presented.

Performance Analysis of the Composite Distributed Directories for High Performance Grid Information Services (고성능 자원정보서비스 구축을 위한 복합 모델 기반 분산 디렉토리의 성능 분석)

  • 권성호;김희철
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.3-6
    • /
    • 2003
  • In this paper, we conduct a performance analysis for the composite scheme that is obtained by combining the data distribution and the data replication schemes usually used for the implementation of distributed directory service systems. The analysis results reveal that the composite model is a viable option to overcome the performance trade-off between the data distribution and the data replication model. In this paper, we present the performance model developed for the composite model by appling queuing modelling. Using the performance model, performance values for a variety of system execution environments are suggested which enable us to bring an efficient design for high performance distributed directories.

  • PDF