• 제목/요약/키워드: composite fibers

검색결과 866건 처리시간 0.021초

Experimental and numerical study of effect of the fibers orientation of the different types of composite plates notched of U-shape repaired by composite patch

  • Berrahou Mohamed;Amari Khaoula;Belkaddour Leila;Serier Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제88권3호
    • /
    • pp.201-208
    • /
    • 2023
  • In this work, the effect of the correction fibers direction on the efficiency of repairing damaged composite plates was highlighted. The composite plates studied in this work consist of eight layers of graphite/epoxy, while the patch used in this repair consists of four layers of the same type. The results obtained in this work, whether with regard to the experimental or analytical side, showed that the fibers orientation affects the repair efficiency, so the closer the angle of fibers inclination is to the tensile strength direction, the performance of the composite material is ideal. Hence, we conclude that the composite materials with longitudinal fibers (Parallel to tensile strength) is the most powerful and efficient material in performance.

Research on Preparation of Sheath-Core Bicomponent Composite Ion Exchange Fibers and Absorption Properties to Metal Ion

  • Ding, Zhi-Jia;Qi, Lu;Ye, Jian-Zhong
    • Macromolecular Research
    • /
    • 제16권1호
    • /
    • pp.21-30
    • /
    • 2008
  • Based on the sheath-core bicomponent composite fibers with modified polystyrene (PS) and the modified polypropylene (PP), composite fibers obtained were further cross-linked and sulphonated with chlorosulphonic acid to produce strong acidic cation ion exchange fibers. The structures of the fibers obtained were characterized using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) etc. The optimal technology of the fibers obtained is discussed. The static absorption capacity of the sheath-core bicomponent composite cation exchange fibers for $Zn^{2+}$, $Cu^{2+}$ was determined. The absorption kinetics and major factors affecting the absorption capacities of $Zn^{2+}$, $Cu^{2+}$ were studied, and its chemical stability and regenerating properties were probed. The results suggest that cation exchange fibers with better mechanical properties and higher exchange capability were obtained. Moreover, this type of ion exchange fiber has good absorption properties and working stability to various metal ions. Hence, they have higher practicability.

Effect of fibers and welded-wire reinforcements on the diaphragm behavior of composite deck slabs

  • Altoubat, Salah;Ousmane, Hisseine;Barakat, Samer
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.153-171
    • /
    • 2015
  • Twelve large-scale composite deck slabs were instrumented and tested in a cantilever diaphragm configuration to assess the effect of fibers and welded wire mesh (WWM) on the in-plane shear capacity of composite deck slabs. The slabs were constructed with reentrant decking profile and reinforced with different types and dosages of secondary reinforcements: Conventional welded wire mesh (A142 and A98); synthetic macro-fibers (dosages of $3kg/m^3$ and $5.3kg/m^3$); and hooked-end steel fibers with a dosage of $15kg/m^3$. The deck orientation relative to the main beam (strong and weak) was also considered in this study. Fibers and WWM were found efficient in distributing the applied load to the whole matrix, inducing multiple cracking, thereby enhancing the strength and ductility of composite deck slabs. The test results indicate that fibers increased the slab's ultimate in-plane shear capacity by up to 29% and 50% in the strong and weak directions, respectively. WWM increased the ultimate in-plane shear capacity by up to 19% in the strong direction and 9% in the weak direction. The results suggest that discrete fibers can provide comparable diaphragm behavior as that with the conventional WWM.

다중벽 탄소나노튜브/리오셀 복합섬유의 제조 및 특성조사 (Preparation and Characterization of Multiwalled Carbon Nanotubes/Lyocell Composite Fibers)

  • Lu, Jiang;Zhang, Huihui;Shao, Huili;Hu, Xuechao
    • 폴리머
    • /
    • 제31권5호
    • /
    • pp.436-441
    • /
    • 2007
  • In this work, the multiwalled carbon nanotubes(MWNTs) were functionalized with sodium dodecylbenzene sulfonate(SDBS) and then MWNTs/Lyocell composite fibers were prepared. The properties of MWNTs, the functionlization on the surface of MWNTs and their dispersion in the cellulose matrix were characterized by TEM, SEM, WAXD and FT-IR. The results showed that SDBS has been coated successfully onto the surface of the MWNTs by functionlization. This can improve effectively the dispersion uniformity of MWNTs in NMMO aqueous solution and is helpful to prepare a spinnable spinning dope. Moreover, the resultant MWNTs/Lyocell composite fibers still have cellulose II crystal structure, and their tensile strength and initial modulus increased with the increasing draw ratio and reached the optimal value with adding 1 wt% MWNTs. The thermal stability of the composite fiber was also improved by the addition of the MWNTs.

미더덕 껍질과 PVA를 혼합한 재료로부터 제조한 복합섬유의 제법과 성질(II) (Preparation and Properties of Regenerated Composite Fibers made from Styela Clava Tunics/PVA Blending( II))

  • 정영진;안병재;김홍성;최해욱;이언필;이재호;김한도;박수민;김성동
    • 한국염색가공학회지
    • /
    • 제20권3호
    • /
    • pp.31-38
    • /
    • 2008
  • Regenerated composite fibers were prepared from solution of styela clava tunics(SC) and poly vinyl alchol(PVA) using N-methylmorpholine-N-oxide(NMMO)/water(87/13)(wt%/wt%) as a solvent by dry jet-wet spinning. Structure and physical properties of regenerated composite fibers were investigated through birefrngence, x-ray diffratograms, tenacity, fibrillation and SEM. Optimal blend ratio of SC/PVA for mechanical properties of composite fibers was 70/30 and total weight was 4wt% concentrations in NMMO/$H_2O$ solvent system. Crystallinity index of composite fibers were decreased as the PVA contents increased. Fibrillation of $10{\sim}20wt%$ PVA blended fibers were occurred less than pure SC fiber. Shape of composite fibers were a circle cross section within 10wt% PVA content. But the cross section of fibers were changed as crushed flat with the PVA contents increased.

Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan;Choi, Yusong;Park, Jong Kyoo;Lee, Jinyong;Yoon, Byung Il;Lim, Yun Soo
    • Fibers and Polymers
    • /
    • 제5권1호
    • /
    • pp.31-38
    • /
    • 2004
  • In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.

Effect of Hot-forging on NiTi Shape Memory Alloy Fibers Reinforced Mg Alloy Composite

  • Guo, Qi;Li, Gang;Tang, Renjian;Yan, Biao
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.846-847
    • /
    • 2006
  • The composite used in this paper was prepared by hot-pressing ball-milled Mg alloy powders, in which NiTi shape memory alloy fibers in a row were sandwiched. The microstructure and property were examined. It is shown that the composite consisted of a homogenous matrix with uniformly distributed NiTi shape memory alloy fibers, recrystallization took place in the Mg alloy matrix which was subjected to plastic deformation an adequate bonding formed between the matrix and fibers; the density and tensile strength of the composite increased after the hot-forging; the hot-forging process is capable of improving properties of the composite.

  • PDF

폴리우레탄 기반 복합 섬유의 기계적, 전기적 특성 (Mechanical and Electrical Characteristics of Polyurethane-Based Composite Fibers)

  • 장호영;이현종;석지원
    • Composites Research
    • /
    • 제33권2호
    • /
    • pp.50-54
    • /
    • 2020
  • 소프트 로봇 및 웨어러블 소자는 대변형 및 큰 유연성을 요구한다. 이에 따라, 소프트 로봇 또는 웨어러블 소자에 부착하여 사용할 수 있는 신축성 스트레인 센서의 필요성이 대두되고 있다. 본 연구에서는 폴리우레탄과 은나노꽃입자를 혼합하여 신축성과 전기전도성을 갖는 복합 섬유를 제조하였다. 이러한 복합 섬유는 스트레인에 따라 섬유의 저항이 변하게 되어 신축성 스트레인 센서로 가능성이 높다. 복합 섬유를 신축성 스트레인 센서로 활용하기 위해서, 복합 섬유의 기계적, 전기적 특성을 측정, 분석하였다.

Preparation of Cellulose Nanofibril/Regenerated Silk Fibroin Composite Fibers

  • Lee, Ji Hye;Bae, Chang Hyun;Park, Byung-Dae;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제26권2호
    • /
    • pp.81-88
    • /
    • 2013
  • Wet-spun silk fibers have attracted the attention of many researchers because of 1) the unique properties of silk as a biomaterial, including good biocompatibility and cyto-compatability and 2) the various methods available to control the structure and properties of the fiber. Cellulose nanofibrils (CNFs) have typically been used as a reinforcing material for natural and synthetic polymers. In this study, CNF-embedded silk fibroin (SF) nanocomposite fibers were prepared for the first time. The effects of CNF content on the rheology of the dope solution and the characteristics of wet-spun CNF/SF composite fibers were also examined. A 5% SF formic acid solution that contained no CNFs showed nearly Newtonian fluid behavior, with slight shear thinning. However, after the addition of 1% CNFs, the viscosity of the dope solution increased significantly, and apparent shear thinning was observed. The maximum draw ratio of the CNF/SF composite fibers decreased as the CNF content increased. Interestingly, the crystallinity index for the silk in the CNF/SF fibers was sequentially reduced as the CNF content was increased. This phenomenon may be due to the fact that the CNFs prevent ${\beta}$-sheet crystallization of the SF by elimination of formic acid from the dope solution during the coagulation process. The CNF/SF composite fibers displayed a relatively smooth surface with stripes, at low magnification (${\times}500$). However, a rugged nanoscale surface was observed at high magnification (${\times}10,000$), and the surface roughness increased with the CNF content.

A Novel Manufacturing Method for Carbon Nanotube/Aramid Fiber Filled Hybrid Multi-component Composites

  • Song, Young-Seok;Oh, Hwa-Jin;Jeong, Tai-Kyeong T.;Youn, Jae-Ryoun
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.333-341
    • /
    • 2008
  • A novel manufacturing method for hybrid composites filled with carbon nanotubes (CNTs) and aramid fibers is proposed. To disperse the CNTs in the epoxy matrix with the presence of aramid fibers, CNT/polyethyleneoxide (PEO) composites are prepared and utilized because PEO is miscible in the epoxy resin. After thin films are made of the CNT/PEO composite and placed together with the aramid fibers, the epoxy resin is infused to them. The PEO is dissolved in the epoxy and then the CNTs are dispersed in the PEO/epoxy matrix between aramid fibers before the pre-heated matrix is cured. It is found that the PEO is completely miscible with the epoxy resin and CNTs are dispersed well in the space between the aramid fibers.