• 제목/요약/키워드: composite factors

검색결과 1,115건 처리시간 0.027초

일부 농촌 지역 노인의 허약수준, 우울, 건강 관련 삶의 질 (Quality of Life, Frailty and Depression in Elderly in Rural Area)

  • 강희경
    • 한국농촌간호학회지
    • /
    • 제12권1호
    • /
    • pp.13-27
    • /
    • 2017
  • Purpose: The purpose of this study is to identify health-related factors, especially for the elderly who are subject to visiting health care at vulnerable populations. Methods: Tools were Guide to Community Integrated Health Promotion Project 2016, Visit Health Care Health Interview Survey, measures of physical function, motor skills, composite mobility, BMI, and subjective fitness levels. Depression was measured with the Short Results: Older elders living alone were more vulnerable than those with living others. Elders with less education showed greater weakness but the difference was not significant. Average scores for frailty were 2.21 (healthy group), 7.66 (high-risk group) and 15.69 (frail group). Scores based on weakness level differed significantly with the exception of nutrition. Nine out of 10 elders in disadvantaged areas were in the frail group or at high risk. Conclusion: Results support the goal to maintain/improve physical/mental functions through individual management of high-risk/frail older adults at risk of becoming infirm. It is imperative to implement a public health care delivery system to ensure programs are operated effectively and personalized.

강섬유 보강 콘크리트의 조기 재령에서의 휨 인성 발현에 관한 연구 (Investigation of Flexural Toughness Development of Steel Fiber Reinforced Concrete at Early Ages)

  • 이창준;신성우
    • 한국안전학회지
    • /
    • 제24권6호
    • /
    • pp.103-110
    • /
    • 2009
  • Since the mechanical properties of cement-based materials are time-dependent due to the prolonged cement hydration process, those of fiber reinforced concrete(FRC) may also be time-dependent. Toughness is one of important properties of FRC. Therefore, it should be investigated toughness development of FRCs with curing ages to fully understand the time-dependent characteristics of FRCs. To this end, the effect of curing ages on flexural toughness development of steel fiber reinforced concrete is studied. Three point bending test with notched beam specimen was adapted for this study. Hooked-end steel fiber(DRAMIX 40/30) was used as a fiber ingredient to investigate w/c ratio and fiber volume fraction effect on toughness development during curing. Three different water-cement ratios(0.44, 0.5 and 0.6) and fiber volume fractions(0%, 0.5% and 1%) were used as influence factors. Each mixture specimens were tested at five different ages, 0.5, 1, 3, 7 and 28 days. The study shows that flexure toughness development with age is quite different than other concrete material properties such as compressive strength. The study also shows that the toughness development trend correlates more closely to water/cement ratio than to fiber volume fraction.

KL-510 하중모형을 적용한 강합성 2거더교 RC 장지간 바닥판의 최소두께 (Minimum Thickness of Long Span RC Deck Slabs for Composite 2-girder Bridges Designed by KL-510 Load Model)

  • 박우진;황훈희
    • 한국안전학회지
    • /
    • 제29권3호
    • /
    • pp.72-78
    • /
    • 2014
  • The minimum thickness of long-span deck slab is proposed by checking the limit state according to the Korean highway bridge design code(limit state design). Both minimizing thickness and ensuring safety of deck slab are important design factors to increase a competitive price of the long span deck slabs. The required thicknesses for satisfying flexural capacity, preventing punching shear failure and limiting deflection were calculated by considering KL-510 load model which has increased total load compared to DB 24 from 432 kN to 510 kN. The results of the required thickness for various limit states were compared to propose the minimum thickness as a function of span length of deck slabs. The proposed minimum thickness is influenced by satisfying flexural capacity and limiting deflection. It turns out to be similar compared to the results of the previous study by ultimate strength design method even if the live load model was increased in total weights.

이중추력형 추진기관 개발 기초연구 (A Study on Dual Thurst Solid Rocket Motors with High/Low Burning Rate Propellants)

  • 송종권;이준호;최성한;서혁
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.664-667
    • /
    • 2010
  • 고체 추진기관은 다른 추진기관에 비해 구조가 간단하고 운용성이 좋아 전략무기의 추진기관으로 주로 사용되고 있다. 그러나 고체 추진기관의 추력형상은 추진제의 연소속도와 추진제 그레인의 연소면적에 의해 결정되며, 추진제의 외경, 길이, 무게, 충전율 등과 같은 다른 설계요소들에 의해 요구되는 추력형상의 획득에 제약을 받는다. 고체 추진기관의 이중추력 성능은 일반적으로 사거리 연장과 종말 속도 향상에 장점이 있으나 추진제 그레인의 형상만으로 성능을 획득하고자하는 경우 연소관 내 추진제의 충전율이 저하된다. 따라서 연소속도가 다른 이종추진제를 적용하여 이중추력을 획득하는 것이 유리하다. 본 연구에서는 연소속도가 다른 이종 추진제를 적용하여 소형 고체 추진기관의 내외탄도 해석 및 지상연소시험을 통해 이중추력 성능을 확인함으로써 이중추력 추진기관 개발 가능성을 확인하였다.

  • PDF

Determination of displacement distributions in welded steel tension elements using digital image techniques

  • Sozen, Sahin
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1103-1117
    • /
    • 2015
  • It is known that material properties, connection quality and manufacturing methods are among the important factors directly affecting the behavior of steel connections and hence steel structures. The possible performance differences between a fabricated connection and its computer model may cause critical design problems for steel structures. Achieving a reliable design depends, however, on how accurately the material properties and relevant constitutive models are considered to characterize the behavior of structures. Conventionally, the stress and strain fields in structural steel connections are calculated using the finite elements method with assumed material properties and constitutive models. Because the conventional strain gages allow the measurement of deformation only at one point and direction for specific time duration, it is not possible to determine the general characteristics of stress-strain distributions in connections after the laboratory performance tests. In this study, a new method is introduced to measure displacement distribution of simple steel welded connections under tension tests. The method is based on analyzing digital images of connection specimens taken periodically during the laboratory tension test. By using this method, displacement distribution of steel connections can be calculated with an acceptable precision for the tested connections. Calculated displacements based on the digital image correlation method are compared with those calculated using the finite elements method.

In-situ test and dynamic response of a double-deck tied-arch bridge

  • Gou, Hongye;Zhou, Wen;Chen, Genda;Bao, Yi;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.161-175
    • /
    • 2018
  • In this study, in-situ dynamic tests of the world's longest steel box tied-arch bridge over the Yangtze River, China, are reported. The double deck bridge supports highway and monorail systems at upper and lower levels, respectively. Strain, displacement, and acceleration responses were measured and used to investigate the vibration characteristics of the bridge when excited by running trains and/or trucks at a speed of 5-60 km/h, train braking, and truck bouncing. Impact factors were correlated with the running speed of trains and trucks. A three-dimensional finite element model of the coupled monorail-train-bridge vibration system accounting for track irregularities was established to understand the system behavior and validated by the experimental results. Truck bouncing was the dominant impact factor on bridge responses. The running speed of vehicles determined the riding comfort of traveling trains.

횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가 (Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test)

  • 조성국;소기환;박웅기
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.

3.5% NaCl 수용액 중에서의 금속과 GECM의 갈바닉 부식에 미치는 면적비의 영향 (Effect of Area Ratio on Galvanic Corrosion Between Metallic Materials and GECM in 3.5% NaCl Solution)

  • 김영식;임현권;손영일;유영란;장현영
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.39-47
    • /
    • 2010
  • Galvanic coupling between GECM(graphite epoxy composite material) and metallic materials can facilitate corrosion of metals and alloys because GECM is noble and electrically conductive. Galvanic corrosion is affected by many factors including metallic materials, area ratio, surface condition, and corrosivity. This work aims to evaluate the effect of area ratio on galvanic corrosion between GECM and several metals. In the case of glavanic coupling of carbon steel and Al to GECM, corrosion rate increased with increasing area ratio. Corrosion rate of sensitized STS 316S stainless steel decreased a little at an area ratio 1:1 but increased at an area ratio 30:1. It is considered to be due to that area ratio affects galvanic corrosion more in less corrosion resistant alloys. However, in case of STS 316 and Ti, galvanic coupling reduces corrosion rate by the formation of passive film.

Seismic behavior of soft storey mid-rise steel frames with randomly distributed masonry infill

  • Quayyum, Shahriar;Alam, M. Shahria;Rteil, Ahmad
    • Steel and Composite Structures
    • /
    • 제14권6호
    • /
    • pp.523-545
    • /
    • 2013
  • In this study, the effect of presence and distribution of masonry infill walls on the mid-rise steel frame structures having soft ground storey was evaluated by implementing finite element (FE) methods. Masonry infill walls were distributed randomly in the upper storey keeping the ground storey open without any infill walls, thus generating the worst case scenario for seismic events. It was observed from the analysis that there was an increase in the seismic design forces, moments and base shear in presence of randomly distributed masonry infill walls which underlines that these design values need to be amplified when designing a mid-rise soft ground storey steel frame with randomly distributed masonry infill. In addition, it was found that the overstrength related force modification factor increased and the ductility related force modification factor decreased with the increase in the amount of masonry infilled bays and panels. These must be accounted for in the design of mid-rise steel frames. Based on the FE analysis results on two mid-rise steel frames, design equations were proposed for determining the over strength and the ductility related force modification factors. However, it was recommended that these equations to be generalized for other steel frame structure systems based on an extensive analysis.

Optimization of HPLC-tandem mass spectrometry for chlortetracycline using response surface analysis

  • Bae, Hyokwan;Jung, Hee-Suk;Jung, Jin-Young
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.309-315
    • /
    • 2018
  • Chlortetracycline (CTC) is one of the most important compounds in antibiotic production, and its distribution has been widely investigated due to health and ecological concerns. This study presents systematic approach to optimize the high-performance liquid chromatography-tandem mass spectrometry for analyzing CTC in a multiple reaction monitoring mode ($479{\rightarrow}462m/z$). One-factor-at-a-time (OFAT) test with response surface analysis (RSA) was used as optimization strategy. In OFAT tests, the fragmentor voltage, collision energy, and ratio of acetonitrile in the mobile phase were selected as major factors for RSA. The experimental conditions were determined using a composite in cube design (CCD) to maximize the peak area. As a result, the partial cubic model precisely predicted the peak area response with high statistical significance. In the model, the (solvent composition) and (collision $energy^2$) terms were statistically significant at the 0.1 ${\alpha}$-level, while the two-way interactions of the independent variables were negligible. By analyzing the model equation, the optimum conditions were derived as 114.9 V, 15.7 eV, and 70.9% for the fragmentor voltage, collision energy, and solvent composition, respectively. The RSA, coupled with the CCD, offered a comprehensive understanding of the peak area that responds to changes in experimental conditions.