• Title/Summary/Keyword: composite factors

Search Result 1,106, Processing Time 0.034 seconds

Usefulness of Microscopic Procedures in Composite Grafts for Fingertip Injuries

  • Jo, Dong In;Song, Yu Kwan;Kim, Cheol Keun;Kim, Jin Young;Kim, Soon Heum
    • Archives of Reconstructive Microsurgery
    • /
    • v.26 no.1
    • /
    • pp.9-13
    • /
    • 2017
  • Purpose: Fingertip amputations are the most common type of upper limb amputations. Composite grafting is a simple and cost-effective technique. Although many factors have investigated the success of composite grafting, the success rate is not high. Therefore, this study was conducted to investigate whether the microscopic procedure process during composite grafts improves the success rate. Materials and Methods: Thirteen cases of unreplantable fingertip amputation underwent a microscopic resection procedure for composite graft in the operating room. The principle of the procedure was to remove the least devitalized tissue, maximize the clean tissue preservation and exact trimming of the acral vessel and to remove as many foreign bodies as possible. Results: All fingertips in the thirteen patients survived completely without additional procedures. Conclusion: Composite grafting allows for the preservation of length while avoiding the donor site morbidity of locoregional flaps. Most composite grafts are performed as quickly as possible in a gross environment. However, we take noticed the microscopic resection. This process is thought to increase the survival rate for the following reasons. First, the minimal resection will maximize the junction surface area and increase serum imbibition. Second, sophisticated trimming of injured distal vessels will increase the likelihood of inosculation. Third, accurate foreign body removal will reduce the probability of infection and make it possible to increase the concentration and efficiency in a microscopic environment. Although there is a need for more research into the mechanisms, we recommend using a composite graft under the microscopic environment.

A study on the fire resistance method using FR-ECC in long tunnel (고인성내화모르터(FR-ECC)를 사용한 장대터널 내화안전대책에 관한 연구)

  • Kim, Se-Jong;Kim, Dong-Jun;Kwon, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • The spalling phenomenon occurs in high-strength concrete when several factors such as sharp temperature increase, high water content, low water/cement ratio and local stress concentration in material combine in the concrete material. On the basis of the factors, the preventing methods from the spalling are known as reduction of temperature increase, preventing of concrete fragmentation and fast drying of internal moisture. In this study, the reduction of temperature increase was proposed as the most effective spalling-preventing method among the spalling-preventing methods. Engineered cementitious composite for fireproof and repair materials was developed in order to protect the new and existing RC structures form exterior deterioration factors such as fire, cloride ion, etc. This study was carried out to estimate the fire-resisting performance of high strength concrete slab or tunnel lining by repaired engineered cementitious composite (ECC) or fiber reinforcement cemetitious composite (FRCC) under fire temperature curve. and them we will descrike the result of HIDA tunnel in Japan.

Correlation Research of Dispersion Factors on the Silica Sol Prepared from Fumed Silica (흄드실리카로부터 제조된 실리카졸의 분산인자 상관성 연구)

  • Park, Min-Gyeong;Kim, Hun;Lim, Hyung Mi;Choi, Jinsub;Kim, Dae Sung
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.136-142
    • /
    • 2016
  • To study the dispersion factors of silica sol prepared from fumed silica powder, we prepared silica sol under an aqueous system using a batch type bead mill. The dispersion properties of silica sol have a close relationship to dispersion factors such as pH, milling time and speed, the size and amount of zirconia beads, the solid content of fumed silica, and the shape and diameter of the milling impellers. Especially, the silica particles in silica sol were found to show dispersion stability on a pH value above 7, due to the electrostatic repulsion between the particles having a high zeta potential value. The shape and diameter of the impellers installed in the bead mill for the dispersion of fumed silica was very important in reducing the particle size of the aggregated silica. The median particle size ($D_{50}$) of silica sol obtained after milling was also optimized according to the variation of the size and amount of the zirconia beads that were used as the grinding medium, and according to the solid content of fumed silica. The dispersion properties of silica sol were investigated using zeta potential, turbiscan, particle size analyzer, and transmission electron microscopy.

The Effect of Delamination Shape Factor, $f_s$ on the Delamination Growth Rate, $dA_D/da$ in FRMLs (층간분리 형상계수($F_s$)가 FRMLs의 층간분리 성장률($dA_D/da$)에 미치는 영향)

  • 송삼홍;이원평;김광래;김철웅
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.398-404
    • /
    • 2003
  • Most previous researches for the hybrid composite materials such as FRMLs(Al/AFRP, Al/GFRP) have evaluated the fatigue delamination behavior using the traditional fracture mechanism. However, most previous researches have not generally been firmed yet. Because delamination growth behavior in hybrid composite should be consider delamination growth rate, $dA_D$/da using the delamination shape factors, fs instead of traditional fracture mechanic parameters. The major purpose of this study was to evaluate the relationship between delamination shape factor, fs and delamination growth rate, $dA_D$ . And a propose parameter on the delamination aspect ratio, b/a. The details of the study are as follow : 1) Relationship between crack length, a and delamination width,b. 2) Relationship between delamination aspect ration, b/a and delamination area rate,($(A_D)_{N}(A_D)_{ALL}$. 3) Variation of delamination growth rate, $dA_D/da$ was attendant on delamination shape factors, $fs_1$, $fs_2$, $fs_3$. The test results indicated the delamination growth rate depends on delamination shape factors.

  • PDF

Optimization of shear connectors with high strength nano concrete using soft computing techniques

  • Sedghi, Yadollah;Zandi, Yosef;Paknahad, Masoud;Assilzadeh, Hamid;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.595-606
    • /
    • 2021
  • This paper conducted mainly for forecasting the behavior of the shear connectors in steel-concrete composite beams based on the different factors. The main goal was to analyze the influence of variable parameters on the shear strength of C-shaped and L-shaped angle shear connectors. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for the mentioned shear strength forecasting. Five inputs are considered: height, length, thickness of shear connectors together with concrete strength and respective slip of the shear connectors after testing. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the shear strength of C-shaped and L-shaped angle shear connectors. The results show that the forecasting methodology developed in this research is useful for enhancing the multiple performances characterizing in the shear strength prediction of C and L shaped angle shear connectors analyzing.

Experimental Investigation of the Effect of Manufacturing and Working Conditions on the Deformation of Laminated Composite Structures (적층복합재료구조물의 변형에 미치는 제작조건과 작동조건의 영향에 대한 실험적 고찰)

  • Nhut, Pham Thanh;Yum, Young-Jin
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.265-272
    • /
    • 2013
  • Fiber-reinforced plastic (FRP) is applied to fabricate the main structures of composite boats. Most of them are made from molds. These products deform after releasing from the mold and they also deform in high temperature environment. Therefore, experimental investigation and evaluation of deformation of laminated composite structures under various manufacturing and working conditions are necessary. The specimens of L-shape and curveshape were made from unsaturated polyester resin and fiberglass material. Input factors (independent variables) are percentage of hardener and manufacturing temperature and four levels of working temperature and output factor is the deformation which is measured on these specimens. From the results, it was observed that the higher the hardener rate and temperature, the lower the deformation. When the working temperature increased, the specimens showed great variations for the initial deformation values. Besides, the values of deformation or input factors could be predicted by regression equations.

Finite Element Modelling of Axially Compressed GFRP Cylindrical Panels (축방향으로 압축을 받는 GFRP 원통형 판넬의 유한요소 모델링)

  • Kim, Ki Du
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.15-25
    • /
    • 1993
  • In order to promote the efficient use of composite materials, effort is currently being directed at the development of design criteria for composite structures. Insofar as design against buckling is concerned, it is well known that, for metal shells, a key step is the definition of 'knockdown' factors on the elastic critical buckling stress accounting mainly for the influence of initial geometric imperfections. At present, the imperfection sensitivity of composite shells has not been explored in detail. Due to the large number of parameters influencing buckling response (considerably larger than for isotropic shells), a very large number of tests would be needed to quantify imperfection sensitivity experimentally. An alternative approach is to use validated numerical models for this task. Thus, the objective of this paper is to outline the underlying theory used in developing a composite shell element and to present results from a validation exercise and subsequently from a parametric study on axially loaded glass fibre-reinforced plastic (GFRP) curved panels using finite element modelling. Both eigenvalue and incremental analyses are performed, the latter including the effect of initial geometric imperfection shape and amplitude, and the results are used to estimate 'knockdown' factors for such panels.

  • PDF

A Study on the Effect of Fracture Delay of Intelligent FRP by Transparent Photoelastic Experimental Method (투과형 광탄성 실험법에 의한 지능성 FRP의 파괴지연 효과에 관한 연구)

  • Lee, Hyo-Jae;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1904-1911
    • /
    • 1999
  • The most effective material in the shape memory alloy(SMA) is the TiNi alloy, because its shape recovery characteristics are very excellent. We molded the composite material with shape memory function. The fiber of it is $Ti_{50}-Ni_{50}$ shape memory alloy and matrix of it is epoxy resin(Araldite B41, Hardner HT903. Ciba Geigy), its adhesive and optical sensitivity are very excellent. It was assured that the composite material could be used as model material of photoelastic experiment for intelligent materials or structures. In this research, the composite material with shape memory function is used as model material of photoelastic experiment. Photoelastic experimental hybrid method is developed in this research, it is assured that it is useful on the obtaining stress intensity factor and the separation of stress components from only isochromatic data. The measuring method of stress intensity factor of intelligent material by photoelastic experiment is introduced. In the mode I state, we can know that stress intensity factors are decreased more than 50% of stress intensity factor of room temperature when temperature of fiber is greater than 4$0^{\circ}C$, prestrain greater than 5% and fiber volume ratio greater than 0.42% and that stress intensity factors are decreased by 100% when fiber volume ratio is greater than 0.84%, prestrain greater than 5% and temperature greater than 60 $^{\circ}C$.

Analysis of Risk Factors for Conversion from Off-Pump to On-Pump Coronary Artery Bypass Graft

  • Lim, Junghyeon;Lee, Won Yong;Ra, Yong Joon;Jeong, Jae Han;Ko, Ho Hyun
    • Journal of Chest Surgery
    • /
    • v.50 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • Background: Off-pump coronary artery bypass (OPCAB) is performed worldwide, but significant risks are associated with conversion to on-pump surgery. Therefore, we evaluated the composite outcomes between an OPCAB group and a conversion group. Methods: From January 2008 to December 2012, 100 consecutive patients underwent OPCAB at Hallym University Sacred Heart Hospital, of whom 84 underwent OPCAB without adverse events (OPCAB group), and 16 were converted to on-pump surgery (conversion group). Early morbidity, early and long-term mortality, and major adverse cardiac and cerebrovascular events (MACCEs) were the primary and long-term composite endpoints. Results: The mean follow-up period was $55{\pm}26months$, with 93% of the patients completing follow-up. The composite outcomes in the OPCAB and conversion groups were as follows: early morbidity, 2.3% versus 12.5%; early mortality, 4.7% versus 0%; long-term mortality, 14.3% versus 25.0%; and MACCEs, 14.3% versus 18.8%, respectively. No composite endpoints showed statistically significant differences. Preoperative acute myocardial infarction (AMI) was identified as an independent risk factor for conversion (p=0.025). Conclusion: The conversion group showed no statistically significant differences in early mortality and morbidity, MACCEs, or long-term mortality compared with the OPCAB group. The preoperative diagnosis of AMI was associated with an increased number of conversions to on-pump surgery.