• Title/Summary/Keyword: composite element

Search Result 3,067, Processing Time 0.037 seconds

A Numerical Method for Strength Analysis of Composite Joints (복합재 체결부 강도해석을 위한 새로운 수치해석방법)

  • Kang BongSoo;Jung JaeWoo;Kweon Jin-Hwe;Choi Jin-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.202-205
    • /
    • 2004
  • A numerical method is presented to determine the characteristic lengths for the failure analysis of composite joints without characteristic length tests. In the conventional methods, compressive characteristic length was determined from the result of a combined bearing test and finite element analysis. The present study, however, shows that the same compressive characteristic length can be obtained by numerical calculation without the bearing test. A new method to define the tensile characteristic length is also introduced so that the tensile characteristic length is numerically determined without the tensile test. Failure loads based on the numerically calculated characteristic lengths are validated by the test results for composite joints

  • PDF

Aeroelastic Stability Analysis of Composite Bearingless Rotor Blades in Hover (복합재 무베어링 로우터 블레이드의 정지 비행시 공력탄성학적 안정성 해석)

  • Lim In-Gyu;Choi Ji-Hoon;Lee In;Han Jae-Hung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.83-86
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube root. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory and Loewy's aerodynamic theory with the lift deficiency function are used for unsteady aerodynamic computation. The finite element equations of motion for beams are obtained using Hamilton's principle. Numerical results of selected bearingless rotor configurations are obtained for the lay-up of laminae in the flexbeam and pitch links location.

  • PDF

Performance of shear connectors at elevated temperatures - A review

  • Shahabi, S.E.M.;Sulong, N.H. Ramli;Shariati, M.;Shah, S.N.R.
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.185-203
    • /
    • 2016
  • Shear connectors are key components to ensure the efficient composite action and satisfactory transfer of shear forces at the steel-concrete interface in composite beams. Under hazardous circumstances, such as fire in a building, the performance of a composite beam significantly relies on the performance of shear connectors. Studies on the behavior of shear connectors subjected to elevated temperatures performed in the last decade are reviewed in this paper. The experimental testing of push-out specimens, the design approaches provided by researchers and different codes, the major failure modes, and the finite element modeling of shear connectors are highlighted. The critical research review showed that the strength of a shear connector decreases proportionally with the increase in temperature. Compared with the volume of work published on shear connectors at ambient temperatures, a few studies on the behavior of shear connectors under fire have been conducted. Several areas where additional research is needed are also identified in this paper.

Impact Characteristics of Glass Fiber Reinforced Composite Curved Beams w.r.t. Pre-load (예 하중이 유리섬유 복합재료 곡선 보의 충격특성에 미치는 영향)

  • Lee, Seung-Min;Lim, Tae-Seong;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.162-167
    • /
    • 2004
  • The low velocity impact characteristics of composite laminate curved beams are investigated to increase damage tolerance and reduce the deflection. Drop weight impact tests of the composite curved beam were performed with respect to pre-load, then the damage after impact was measured by macrography. Also, finite element analyses were performed using ABAQUS to investigate the stress state of composite curved beam with respect to pre-load and impact. From the investigation, it was found that pre-load of the composite curved beams had much influence on impact damage of the curved beam, which showed good agreement with the experiment results.

  • PDF

Evaluation of the Structural Integrity of a Sandwich Composite Train Roof Structure (샌드위치 복합재 철도차량 루프구조물의 구조안전성 평가)

  • Shin Kwang-Bok;Ryu Bong-Jo;Lee Jea-Youl;Lee Sang-Jin;Jo Se-Huen
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.338-343
    • /
    • 2005
  • We have evaluated the structural integrity of a sandwich composite train roof which can find a lightweight, cost saving solution to large structural components for rail vehicles in design stages. The sandwich composite train roof was 11.45 meter long and 1.76 meter wide. The reinforced frame was inserted in sandwich panels to improve the structural performance of train roof structure and had the shape of hollow rectangular box. The finite-element analysis was used to calculate the stresses, deflections and natural frequencies of the sandwich composite train roof against the weight of air-condition system. The 3D sandwich FE model was introduced to simulate the hollow aluminum frames which jointed to both sides of the sandwich train roof. The results shown that the structural performance of a sandwich composite train roof under load conditions specified was proven and the use of aluminum reinforced frame was beneficial with regard to weight savings in comparison to steel reinforced frame.

  • PDF

The Shape Deformations of Composite Shell Structures Integrated with SMA Actuators whose 3-D Behaviors are Considered (3차원 거동특성이 고려된 SMA 엑츄에이터가 결합된 3차원 복합구조물의 형상 변형 해석)

  • Kim, Cheol;Lee, Sung-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.478-485
    • /
    • 2002
  • The shape memory alloys (SMAs) are often used in smart materials and structures as the active components. Their ability to provide a high recovery force and a large displacement has been used in many applications. In this paper the radial displacement of an externally pressurized elliptic composite cylinder where SMA liner or strips actuators are bonded on its inner or outer surface is investigated numerically. The elliptic composite cylinders consisting of an inlet duct system with SMAs are designed and analyzed to determine the feasibility of such a system for the removal of stiffeners from an externally pressurized duct of an aircraft inlet. The deformations caused by prestrained SMAs placed on either surface of an elliptic composite cylinder are studied when activated. The externally pressurized elliptic composite cylinders with the SMA actuators were analyzed using the 3-D finite element method incorporated with 3-D SMA behaviors. The results show that the role of stiffeners may be switched by the activated light SMA actuators.

  • PDF

Influence of viscous phenomena on steel-concrete composite beams with normal or high performance slab

  • Fragiacomo, M.;Amadio, C.;Macorini, L.
    • Steel and Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.85-98
    • /
    • 2002
  • The aim of the paper is to present some results about the influence of rheological phenomena on steel-concrete composite beams. Both the cases of slab with normal and high performance concrete for one and two-span beams are analysed. A new finite element model that allows taking into account creep, shrinkage and cracking in tensile zones for concrete, along with non-linear behaviour of connection, steel beam and reinforcement, has been used. The main parameters that affect the response of the composite beam under the service load are highlighted. The influence of shrinkage on the slip over the supports is analysed, together with the cracking along the beam. At last, by performing a collapse analysis after a long-term analysis, the influence of rheological phenomena on the ductility demand of connection and reinforcement is analysed.

Evaluation for Fatigue Resistance of Small Wind Turbine Composite Blade according to GL Guideline (GL Guideline에 의거한 소형 풍력발전용 복합재 블레이드의 피로 저항성 평가)

  • Jang, Yun Jung;Kang, Ki Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.15-21
    • /
    • 2013
  • This study aims to estimate the fatigue resistance of small wind composite blade using the fatigue life estimation formula in the GL guideline. For this, firstly, we estimated a turbine blade's bending moment spectrum by using wind profile wind profile and BEMT. And fatigue tests were performed to obtain the S-N curve of composite materials used in blade. In addition, a finite element analysis was used to identify fatigue critical locations and fatigue stress spectrum. And the fatigue resistance of composite blade were evaluated using the rainflow cycle counting, and Goodman diagram and the fatigue life estimation formula in the GL guideline.

Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch

  • Merzoug, Mohamed;Boulenouar, Abdelkader;Benguediab, Mohamed
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.209-216
    • /
    • 2017
  • In this paper, the analysis of the behavior of surface cracks in finite-thickness plates repaired with a Boron/Epoxy composite patch is investigated using three-dimensional finite element methods. The stress intensity factor at the crack-front was used as the fracture criteria. Using the Ansys Parametric Design Language (APDL), the stress intensities at the internal and external positions of repaired surface crack were compared. The effects of the mechanical and geometrical properties of the adhesive layer and the composite patch on the variation of the stress intensity factor at the crack-front were examined.

Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection

  • Heidari-Rarani, M.;Kharratzadeh, M.
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.305-313
    • /
    • 2019
  • Creating different cutout shapes in order to make doors and windows, reduce the structural weight or implement various mechanisms increases the likelihood of buckling in thin-walled structures. In this study, the effect of cutout shape and geometric imperfection (GI) is simultaneously investigated on the critical buckling load and knock-down factor (KDF) of composite cylindrical shells. The GI is modeled using single perturbation load approach (SPLA). First, in order to assess the finite element model, the critical buckling load of a composite shell without cutout obtained by SPLA is compared with the experimental results available in the literature. Then, the effect of different shapes of cutout such as circular, elliptic and square, and perturbation load imperfection (PLI) is investigated on the buckling behavior of cylindrical shells. Results show that the critical buckling load of a shell without cutout decreases by increasing the PLI, whereas increasing the PLI does not have a great impact on the critical buckling load in the presence of cutout imperfection. Increasing the cutout area reduces the effect of the PLI, which results in an increase in the KDF.