• Title/Summary/Keyword: composite element

Search Result 3,067, Processing Time 0.027 seconds

Determination of Equivalent Thermal Conductivities of Composite Materials Using Homogenization Technique (균질화기법을 이용한 복합재료의 등가 열전도계수의 계산)

  • 이진희;이봉래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1245-1252
    • /
    • 1994
  • A solution of heat transfer problems of composite materials has been tried using homogenization technique. Homogenization technique, which was derived by applying asymptotic expansion to the standard finite element method, helped compute the equivalent thermal conductivity matrices of base cells which constituted the composite material with repeated patterns. The homogenization technique made it possible to compute the solution of the heat transfer problem of composite materials with lower degrees of freedom compared to those of other numerical methods. The equivalent thermal conductivities computed by computed by homogenization technique are also applicable to other numerical methods such as finite difference method.

Modeling and Performance Evaluation of Multi-layer Composite Floor Plates with Holes (천공 다층 복합 바닥재의 모델링 및 성능평가)

  • Yoo, Hong Hee;Lee, Chang-Geun;Yoo, Hong-Geol;Joo, Young-Jun;Cho, Jung-Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.665-670
    • /
    • 2002
  • Pleasantness or quietness becomes one of the most important factors for residential designs recently. Especially for apartments, the noise generated by falling objects becomes a sensitive issue these days. To overcome the problem of the impact noise in apartments, the floor design has been changed. To reduce the transmissibility of the noise, composite floor structures are devised and implemented for the construction of apartments. In this paper, the noise reduction performance of a composite floor plate with holes is analyzed. Computational modelings for the structures are developed and its performance is evaluated by using the finite element method. The results show that the noise can be well reduced with the multi-layer composite floor plates with holes.

  • PDF

Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.1035-1053
    • /
    • 2015
  • A genetic algorithm-based minimum weight design method is presented for steel frames containing composite beams, semi-rigid connections and column bases. Genetic Algorithms carry out optimum steel frames by selecting suitable profile sections from a specified list including 128 W sections taken from American Institute of Steel Construction (AISC). The displacement and stress constraints obeying AISC Allowable Stress Design (ASD) specification and geometric (size) constraints are incorporated in the optimization process. Optimum designs of three different plane frames with semi-rigid beam-to-column and column-to-base plate connections are carried out first without considering concrete slab effects on floor beams in finite element analyses. The same optimization procedures are then repeated for the case of frames with composite beams. A program is coded in MATLAB for all optimization procedures. Results obtained from the examples show the applicability and robustness of the method. Moreover, it is proved that consideration of the contribution of concrete on the behavior of the floor beams enables a lighter and more economical design for steel frames with semi-rigid connections and column bases.

Minimum Weight Design Method for Infantry Fighting Vehicles Hull using Thick Composite Laminate (전투용 차량의 경량화 최적설계 기법 연구)

  • 김건인;조맹효;구만회
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2001
  • In this paper, general design process for Tracked Fighting Vehicle has been suggested. Stress analysis and optimal design for ply angle of IFV's composite upper hull has been calculated using KMA CIFV and it is contained exploratory development of design process. In this point, this paper applied composite to IFV's upper hull. Finite element mesh has been made using Matlab program, and we have analyzed stress based on the given material properties and ply arrangement. For each load condition, load distribution in plane and failure index are calculated by using Tasi-Hill criterion, which is composite failure criterion and analyzing change of failure index as change of ply angle. Finally, optimal ply angles of upper hull are calculated using KMA CIFV. We can estimate the decrease of weight for IFV's upper hull.

  • PDF

A Study on the Delamination Growth in Composite Laminates Subjected to Low-Velocity Impact (저속 충격을 받는 복합 재료 적층판의 층간 분리 성장에 관한 연구)

  • 장창두;송하철;김호경;허기선;정종진
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.55-59
    • /
    • 2002
  • Delamination means that cracking occurs on the interface layer between composite laminates. In this paper, to predict the delamination growth in composite laminates subjected to low-velocity impact, the unit load method was introduced, and an eighteen-node 3-D finite element analysis, based on assumed strain mixed formulation, was conducted. Strain energy release rate, necessary to determine the delamination growth, was calculated by using the virtual crack closure technique. The unit load method saves the computation time more than the re-meshing method. The virtual crack closure technique enables the strain energy release rate to be easily calculated, because information of the singular stress field near the crack tip is not required. Hence, the delamination growth in composite laminates that are subjected to low-velocity impact can be efficiently predicted using the above-mentioned methods.

A Study on Design and Test for Composite Blade of Small Scale Wind Turbine System (소형 풍력발전 시스템용 복합재 블레이드의 설계 및 시험에 관한 연구)

  • Kong Changduk;Bang Johyug;Park Jongha;Oh Kyungwon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.125-130
    • /
    • 2004
  • This study proposes a development for the l-kW class small wind turbine system, which is applicable to relatively low wind speed region like Korea and has the variable pitch control mechanism. In the aerodynamic design of the wind turbine blade, parametric studies were carried out to determine an optimum aerodynamic configuration which is not only more efficient at low wind speed but whose diameter is not much larger than similar class other blades. A light composite structure, which can endure effectively various loads, was newly designed. In order to evaluate the structural design of the composite blade, the structural analysis was performed by the finite element method. Moreover both structural safety and aerodynamic performance were verified through the prototype test.

  • PDF

Large Scale Numerical Analysis for the Performance Prediction of Multilayered Composite Curved Actuator (적층 복합재료를 사용한 곡면형 작동기의 성능 예측을 위한 대규모 수치해석 연구)

  • 정순완;황인성;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.167-170
    • /
    • 2003
  • In this paper, the electromechanical displacements of curved actuators using laminated composites are calculated by finite element method to design the optimal configuration of curved actuators. To predict the pre-stress in the device due to the mismatch in coefficients of thermal expansion, the carbon-epoxy and glass- epoxy as well as PZT ceramic is also numerically modeled by using hexahedral solid elements. Because the modeling of these thin layers causes the numbers of degree of freedom to increase, large-scale structural analyses are performed in a cluster system in this study. The curved shape and pre-stress in the actuator are obtained by the cured curvature analysis. The displacement under the piezoelectric force by an applied voltage is also calculated to compare the performance of curved actuator. The thickness of composite is chosen as design factor.

  • PDF

Stress Analysis and Sizing for a Glass/Epoxy Composite Wind Turbine Blade (풍력발전기용 대형 복합재 블레이드에 대한 구조 해석 및 사이징에 관한 연구)

  • 이충훈;박진무;홍순곤;박지상;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.5-9
    • /
    • 2002
  • This paper presents a method and procedure for stress analysis and sizing in development of structures of a large composite wind turbine blade. Structural requirement of IEC standard was reviewed to set up appropriate analysis method and procedure. Several structural layouts were examined in a viewpoint of a large scale wind turbine blade. For the critical load cases, stress analysis were performed using finite element method. Stacking sequence and thickness of a laminate for each part and location were determined considering stress levels and producibility. Nonlinear geometric analysis was performed to check stability problem due to local buckling of a skin structures.

  • PDF

A Study of damage behaviors of 3D orthogonal woven composite plates under Low velocity Impact (3D 직교 직물 복합재료 평판의 미시구조를 고려한 손상 거동 연구)

  • Ji, Kuk-Hyun;Yang, Jeong-Sik;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.53-56
    • /
    • 2005
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites arc obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties arc validated by comparison to available experimental results. Second, using the implementation of this validated micromechanical model, 3D transient finite-clement analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study with the homogenized model will be carried out in terms of global and local behaviors.

  • PDF

A Study on Structural Design and Test of 500W Class Micro Scale Composite Wind Turbine Blade (초소형 풍력터빈 복합재 블레이드 구조 설계에 관한 연구)

  • Gong, Chang-Deok;Kim, Ju-Il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.190-193
    • /
    • 2005
  • The purpose of the present study is to design a 500W-class micro scale composite wind turbine blade. The blade airfoil of FFA-W3-211 was selected to meet Korean weather condition. The skin-spar-f Dam sandwich type structure was adopted for improving buckling and vibration damping characteristics. The design loads were determined at wind speed of 25m/s. and the structural analysis was performed to confirm safety and stability from strength. buckling and natural frequency using the finite element code. NISA II [6]. The prototype was manufactured using the hand-lay up method and it was experimently tested using the sand bag loading method. In order to evaluate the design results. it was compared with experimental results. According to comparison results. the estimated results such as compressible stress. max tip deflection natural frequency and buckling load factor were well agreed with the experimental results.

  • PDF