• Title/Summary/Keyword: composite element

Search Result 3,067, Processing Time 0.026 seconds

Vibration suppression of rotating blade with piezocomposite materials (Piezocomposite 재료를 사용한 회전하는 블레이드의 진동억제)

  • Choi Seung-Chan;Kim Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.282-285
    • /
    • 2004
  • The main purpose of this study is the vibration suppression of rotating composite blade containing distributed piezoelectric sensors and actuators. The blade is modeled by thin-walled, single cell composite beam including the warping function, centrifugal force, Coriolis acceleration and piezoelectric effect. Further, the numerical study is performed m ing finite element method. The vibration of composite rotor is suppressed by piezocomposite actuators and PVDF sensors that are embedded between composite layers. A velocity feedback control algorithm coupling the direct and converse piezoelectric effect is used to actively control the' dynamic response of an integrated structure through a closed control loop. Responses of the rotating blade are investigated. Newmark time integration method is used to calculate the time response of the model. In the numerical simulation, the effect of parameters such as rotating speed, fiber orientation of the blade and size of actuators are studied in detail.

  • PDF

Numerical Analysis of Shape Modification for the Composite Structures using SMA Strip Actuator (형상기억합금 작동기를 이용한 복합재료 구조물의 형상 변형 해석)

  • Roh Jin-Ho;Han Jae-Hung;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.278-281
    • /
    • 2004
  • In this paper, the thermomechanical responses of shape memory alloy (SMA) actuators and their applications as the shape adaptive structures combining SMA actuators produced in the form of strip with composite structures are investigated. The numerical algorithm of the 3-D SMA thermomechanical constitutive equations based on Lagoudas model is implemented to analyze the unique characteristics of SMA strip. Also, the incremental SMA constitutive equations are implemented in the user subroutine UMAT by using ABAQUS finite element program. The shape change of structure is caused by initially strained SMA strip bonded on the surface of the composite structure when thermally activated. Numerical results show that SMA strip actuator can generate enough recovery force to deform the composite structure and sustain the deformed shape subjected to large external load, simultaneously.

  • PDF

ELASTIC GUIDED WAVES IN COMPOSITE PIPES

  • Cho Younho;Lee Joon-Hyun;Lee Chong Myong;Rose Joseph L.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.258-263
    • /
    • 2004
  • An efficient technique for the calculation of guided wave dispersion curves in composite pipes is presented. The technique uses a forward-calculating variational calculus approach rather than the guess and iterate process required when using the more traditional partial wave superposition technique The formulation of each method is outlined and compared. The forward-calculating formulation is used to develop finite element software for dispersion curve calculation. Finally, the technique is used to calculate dispersion curves for several structures, including an isotropic bar, two multi-layer composite bars, and a composite pipe.

  • PDF

Structural Design and Analysis of Composite Flaperon for a Supersonic Aircraft (초음속 항공기용 복합재 플래퍼론의 구조설계 및 해석)

  • Lee Myeong-Soo;Kweon Jin-Hwe;Kang Ki-Hwan;Lee Gwang-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.116-120
    • /
    • 2004
  • A metal flaperon of a supersonic aircraft including the ribs, and skins was re-designed with a graphite/epoxy composite material to evaluate the weight saving effect. MSC/NASTRAN was used for the finite element analysis. The safety of the composite structures were evaluated in terms of the failure index, section cut, buckling, bearing/bypass and durability and damage tolerance analysis. After the application of the composite material, total weight saving of 25.6 pounds was achieved.

  • PDF

Theory of Thin-Walled, Pretwisted Composite Beams with Elastic Couplings

  • Jung, Sung-Nam;Kim, Chang-Joo;Ko, Jin-Hwan;Kim, Chang-Wan
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.105-119
    • /
    • 2009
  • In this work, the structural response of thin-walled composite beams with pretwist angle is investigated by using a mixed beam approach that combines the stiffness and flexibility methods in a unified manner. The Reissner's semi-complimentary energy functional is used to derive the stiffness matrix that approximates the beam in an Euler-Bernoulli level for extension and bending and Vlasov level for torsion. The bending and torsion-related warpings induced by the pretwist effects are derived in a closed form. The developed theory is validated with available literature and detailed finite element structural analysis results using the MSC/NASTRAN. Pretwisted composite beams with rectangular solid and thin-walled box sections are illustrated to validate the current approach. Acceptable correlation has been achieved for cases considered in this study. The effects of pretwist and fiber orientation angles on the static behavior of pretwisted composite beams are also studied.

Development of a PZT Fiber/Piezo-Polymer Composite Actuator with Interdigitated Electrodes

  • Kim, Cheol;Koo, Kun-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.666-675
    • /
    • 2002
  • Piezoelectric Fiber Composites with Interdigitated Electrodes (PFCIDE) were previously introduced as an alternative to monolithic wafers with conventional electrodes for applications of structural actuation. This paper is an investigation into the performance improvement of piezoelectric fiber composite actuators by changing the matrix material. This paper presents a modified micro-electromechanical model and numerical analyses of piezoelectric fiber/piezopolymer matrix composite actuator with interdigitated electrodes (PFPMIDE). Various concepts from different backgrounds including three-dimensional linear elastic and dielectric theories have been incorporated into the present linear piezoelectric model. The rule of mixture and the modified method to calculate effective properties of fiber composites were extended to apply to the PFPMIDE model. The new model was validated when compared with available experimental data and other analytical results. To see the structural responses of a composite plate integrated with the PFPMIDE, three-dimensional finite element formulations were derived. Numerical analyses show that the shape of the graphite/epoxy composite plate with the PFPMIDE may be controlled by judicious choice of voltages, piezoelectric fiber angles, and elastic tailoring of the composite plate.

Design Optimization of Bolted Connection with Wood Laminated Composite Beams Subjected to Distributed Loads (분포하중을 받는 목재 적층복합재 빔의 볼트 체결 최적화 설계)

  • Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.292-298
    • /
    • 2017
  • Numerical analysis for various design parameters should be preceded by optimal design of composite materials. Numerous studies have been conducted on the bolting of interconnecting beams. In this study, the response surface method was applied to optimize the design of bolted joints connected by laminated wood composite beams. The response surface was created by combining the FEA code for composite analysis and the algorithm for forming the response surface. Optimization on this response surface was performed with a genetic algorithm to derive the results. The determination of the optimum bolt-hole position for the connection of composite beams is an optimization problem. Tsai-Wu composite failure index, maximum deflection, and simple von Mises stress are set as the objective functions. It has been proved that the design results of the optimized bolt-hole are superior to the design performance of the existing conventional bolt-hole position.

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part II: Parametric study and comparison with the Eurocode 4 proposal

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.371-382
    • /
    • 2003
  • This paper analyses the response of rigid and semi-rigid steel-concrete composite joints under monotonic loading. The influence of some important parameters, such as the presence of column web stiffening and the mechanical properties of component materials, is investigated by using a three-dimensional finite element modelling based on the Abaqus code. Numerical and experimental responses of different types of composite joints are also compared with the analytical results obtained using the component approach proposed by Eurocode 4. The results obtained with this approach generally fit well with the numerical and experimental values in terms of strength. Conversely, some significant limits arise when evaluating initial stiffness and non-linear behaviour of the composite joint.

Geometrical nonlinear dynamic analysis of laminated skew plates made of advanced composite materials (적층된 ACM 경사판의 기하학적 비선형 동적 해석)

  • Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.28-34
    • /
    • 2010
  • W e performed a geometrical nonlinear dynamic analysis of laminated skew plates made of advanced composite materials (ACM ) based on the first-order shear deformation plate theory (FSDT). The Newmark method and Newton-Raphson iteration are used for the nonlinear dynamic solution. The effects of skew angles and layup sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite and skew plates, and the new results reported in this paper show the significant interactions between the skew angle and layup sequence in the skew laminate. Key observation points are discussed and a brief design guideline is given.

  • PDF

Natural Frequency and Mode Characteristics of Composite Pole Structures for Different Layup Sequences (복합소재 기둥 구조의 적층배열 변화에 따른 고유진동 및 모드 특성)

  • Kim, Gyu-Dong;Rus, Guillermo;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • The dynamic analysis of poles made of advanced composite materials is carried out for different length-thickness ratios and layup sequences. The numerical results using ABAQUS obtained for plates and shells are in good agreement with those reported by other investigators. The new results for laminated composite pole structures in this study mainly show the effect of the interactions between the radius-length ratio and other various parameters. The effect of fiber angles of long composite poles also investigated. Key observation points are discussed and a brief design guideline is given.