• Title/Summary/Keyword: composite element

Search Result 3,067, Processing Time 0.028 seconds

Design of Adhesive Joints for Composite Propeller Shafts (복합재료 동력전달축의 접착조인트 설계)

  • 김진국;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.149-153
    • /
    • 2000
  • Substituting composite structures for conventional metallic structures has many advantages because of higher specific stiffness and specific strength of composite materials. In this work, one-piece propeller shafts composed of carbonfepoxy and glass/epoxy composites were designed and manufactured for a rear wheel drive automobile satisfying three design specifications, such as static torque transmission capability, torsional buckling and the fundamental natural bending frequency. Single lap adhesively bonded joint was employed to join the composite shaft and the aluminum yoke. For the optimal adhesive joining of the composite propeller shaft to the aluminum yoke, the torque transmission capability of the adhesively bonded composite shaft was calculated with respect to bonding length and yoke thickness by finite element method and compared with the experimental result. Then an optimal design method was proposed based on the failure model which incorporated the nonlinear mechanical behavior of aluminum yoke and epoxy adhesive. From the experiments and FEM analyses, it was found that the static torque transmission capability of composite propeller shaft was maximum at the critical yoke thickness, and it saturated beyond the critical length. Also, it was found that the one-piece composite propeller shaft had 40% weight saving effect compared with a two-piece steel propeller shaft.

  • PDF

Impact Behavior of Laminated Composite using Progressive Failure Model (단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석)

  • 강문수;이경우;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF

Probabilistic Behavior of Laminated Composite Plates with Random Material Properties (재료 물성치의 불확실성에 의한 복합적층판 변위의 확률적 거동)

  • Noh, Hyuk-Chun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.27-32
    • /
    • 2008
  • The laminated composite materials have been applied to various mechanical structures due to their high performance to weight ratios. In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates. The composite materials consist of two different materials which constitute the matrix and fiber. The material properties in the major and minor directions are determined depending on the volume fraction of these two materials. In this study, the elastic modulus and shear modulus are considered as random and the effect of these random properties on the behavior of the composite plate is investigated. We adopt the weighted integral scheme in the formulation, which has been recognized as the most accurate method in the statistical methodologies. For verification of the proposed scheme, Monte Carlo analysis is also performed for the comparison with the proposed scheme.

  • PDF

Analytical and Experimental Studies on the Natural Frequency of a Composite Train Carbody (복합재 철도차량 차체 고유진동수에 대한 해석 및 시험적 연구)

  • Jeong Jong-Cheol;Cho Sea-Hyun;Seo Seong-Il;Kim Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.473-480
    • /
    • 2006
  • This paper explains analytical and experimental studies to evaluate the natural frequency of a composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. From the finite element analysis, the 1st bending and 1st twisting natural frequency of the composite carbody were 11.67Hz and 14.4Hz, respectively. In order to verify the analytical results, the natural frequency measuring tests were performed. The measured 1st bending and twisting natural frequencies of the composite carbody were 10.25Hz and 11.0Hz, respectively. Both of these results satisfied the design requirement.

Fuzzy multi-objective optimization of the laminated composite beam (복합재 적층 보의 퍼지 다목적 최적설계)

  • 이강희;구만회;이종호;홍영기;우호길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.143-148
    • /
    • 2000
  • In this article, we presents multi-objective design optimization of laminated composite beam using Fuzzy programming method. At first, the two design objectives are minimizing the structural weight and maximizing the buckling load respectively. Fuzzy multi-optimization problem can be formulated based on results of single optimizations. Due to different relative importance of design objectives, membership functions are constructed by adding exponential parameters for different objective's weights. Finite element analysis of composite beam for buckling behavior are carried by Natural mode method proposed by J.Argyris and computational time of analysis can be reduced. With this scheme, a designer can conveniently obtain a compromise optimal solution of a multi-objective optimization problem only by providing some exponential parameters corresponding to the importance of the objective functions.

  • PDF

Strength of composite notches under shear load (전단하중을 받는 복합재료 다중 노치의 파괴강도)

  • 이재광;황병선;박승범;박인서;윤한기
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.50-53
    • /
    • 2001
  • An experimental research work for the fracture and notch strength of thick laminates has been performed to develop high quality composite notches for structural use. Thus, the multi-directional laminates are designed and compared to the baseline aluminum. The difference of notch strength caused by manufacturing techniques is also discussed. The notches of selected materials are evaluated by the static test and low-velocity impact test. Failure modes are also observed and assessed. Material design is evaluated by the FEA(finite element analysis) and confirmed by experiments. The successful results are obtained for thick composite notches, which shows higher strength than aluminum notches.

  • PDF

Flexural Characteristics of Composite Deck Model Fabricated with VARTM (진공성형제작 복합소재 바닥판 모델의 휨특성분석)

  • 이성우;주성애
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.130-133
    • /
    • 2001
  • Recent days composite bridge deck is gaining attraction due to many advantages such as light weight, high strength, corrosion resistance, and high durability. In this study, composite sandwich deck models of hat, box, and triangular section type were fabricated by VARTM process. For those models, three point flexural test was carried out both in strong and weak axis. The experimental results are compared with each other to determine efficient section type. Also finite element analysis was performed to verify analysis model. It is demonstrated that the results of numerical analysis agree well with experimental results.

  • PDF

Effect of Elastic/Plastic Mismatch on the Contact Crack Initiation in Asymmetric Layered Composite (층상형 비대칭성 복합재료의 탄성/소성 불일치가 접촉 균열의 개시에 미치는 영향)

  • Kim, Sang-Kyum;Lee, Kee-Sung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.195-198
    • /
    • 2005
  • The role of elastic/plastic mismatch on the contact crack initiation is investigated for designing desirable surface-coated asymmetric layered composites. Various layered composites such as $Si_3N_4$ ceramics on $Si_3N_4+BN$ composite, soda-lime glass on various substrates with different elastic modulus for the analysis. Spherical indentation is conducted for producing contact cracks from the surface or interface between the coating and the substrate layer. A finite element analysis of the stress fields in the loaded layer composites enables a direct correlation between the damage patterns and the stress distributions. Implications of these conclusions concerning the design of asymmetric layered composites indicate that the elastic modulus mismatch is one of the important parameter for designing layered composite to prevent the initiation of contact cracks.

  • PDF

Vibration Characteristics of a 1-3 Piezoelectric Composite Arrayed on a Cylindrical Surface (원통면에 배열된 1-3 압전 복합체의 진동 특성)

  • Kim, Dae-Seung;Kim, Jin-Oh
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.93-96
    • /
    • 2007
  • This paper presents a theoretical approach to describe the vibration characteristics in the 1-3 piezoelectric composite arrayed on a cylindrical surface. By homogenizing the composite composed of a piezoelectric ceramic and a polymer the physically useful parameters were defined and then used to derive the governing equation of radial motion for the cylindrical 1-3 piezoelectric composite. Applying mechanical and electric boundary conditions has yielded a characteristic equation for radial vibration of the composite. Theoretical calculations of the resonance frequency have been compared with those obtained by the finite-element analysis and have shown a good agreement.

  • PDF

Nonlinear deflection responses of layered composite structure using uncertain fuzzified elastic properties

  • Patle, B.K.;Hirwani, Chetan K.;Panda, Subrata Kumar;Katariya, Pankaj V.;Dewangan, Hukum Chand;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.753-763
    • /
    • 2020
  • In this article, the influence of fuzzified uncertain composite elastic properties on non-linear deformation behaviour of the composite structure is investigated under external mechanical loadings (uniform and sinusoidal distributed loading) including the different end boundaries. In this regard, the composite model has been derived considering the fuzzified elastic properties (through a triangular fuzzy function, α cut) and the large geometrical distortion (Green-Lagrange strain) in the framework of the higher-order mid-plane kinematics. The results are obtained using the fuzzified nonlinear finite element model via in-house developed computer code (MATLAB). Initially, the model accuracy has been established and explored later to show the dominating elastic parameter affect the deflection due to the inclusion of fuzzified properties by solving a set of new numerical examples.