• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.022 seconds

Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite

  • Pandey, Harsh Kumar;Agrawal, Himanshu;Panda, Subrata Kumar;Hirwani, Chetan Kumar;Katariya, Pankaj V.;Dewangan, Hukum Chand
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.715-724
    • /
    • 2020
  • The influence on flexural strength of Glass/Epoxy laminated composite curved panels of different geometries (cylindrical, spherical, elliptical, hyperboloid and flat) due to inclusion of nano cenosphere filler examined in this research article. The deflection responses of the hybrid structure are evaluated numerically using the isoparametric finite element technique and modelled mathematically via higher-order displacement structural kinematics. To predict the deflection values, a customised in-house computer code in MATLAB environment is prepared using the higher-order isoparametric formulation. Subsequently, the numerical model validity has been established by comparing with those of available benchmark solution including the convergence characteristics of the finite element solution. Further, a few cenosphere filled hybrid composite are prepared for different volume fractions for the experimental purpose, to review the propose model accuracy. The experimental deflection values are compared with the finite element solutions, where the experimental elastic properties are adopted for the computation. Finally, the effect of different variable design dependent parameter and the percentages of nano cenosphere including the geometrical shapes obtained via a set of numerical experimentation.

Finite Element Analysis for Bending Performance of Steel Pipe Pile Cap with the Open Perforated Shear Connector (개방형 유공강판 전단연결재로 보강된 강관말뚝머리의 휨거동에 관한 유한요소 해석)

  • Kim, Young-Ho;Kang, Jae-Yoon;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.4018-4023
    • /
    • 2010
  • Various kinds of shear connector such as headed stud, channel, perforated steel plate and others are commonly used to transfer stress and present composite performance in composite structures, and many researches have been conducted to improve the characteristics of different types of shear connectors. It is focused in this study on the bending performance of steel pipe pile cap with the open type perforated shear connector for the composite connection to the spread footing. Nonlinear analysis was conducted, using ABAQUS, a finite element analysis program, to obtain information for determining the characteristics of the structure and to allow various parametric analysis for bending performance of steel pipe pile cap with the open perforated shear connector.

Design of optimal fiber angles in the laminated composite fan blades (적층 복합재 팬-블레이드의 적층각도 최적화 설계)

  • Jeong, Jae-Yeon;Jo, Yeong-Su;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1765-1772
    • /
    • 1997
  • The layered composites have a character to change of structure stiffness with respect to the layup angles. The deformations in the fan-blades to be initially designed by considering efficiency and noise, etc., which arise due to the pressure during the fan operation, can make the fan inefficient. Thus, so as to minimize the deformations of the blades, it is needed to increase the stiffness of the blades. An investigation has been performed to develop the three dimensional layered composite shell element with the drilling degree of freedom and the optimization module for finding optimal layup angles with sensitivity analysis. And then they have been verified. In this study, the analysis model is engine cooling fan of automobile. In order to analyzes the stiffness of the composite fan blades, finite element analysis is performed. In addition, it is linked with optimal design process, and then the optimal angles that can maximize the stiffness of the blades are found. In the optimal design process, the deformations of the blades are considered as multiobjective functions, and this results minimum bending and twisting simultaneously.

Shape Optimization of Three-Dimensional Cutouts in Laminated Composite Plates Using Solid Element (솔리드 요소를 이용한 적층복합재 구멍의 형상 최적화)

  • 한석영;마영준
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.16-22
    • /
    • 2004
  • Shape optimization was performed to obtain the precise shape of cutouts including the internal shape of cutouts in laminated composite plates by three dimensional modeling using solid element. The volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. The volume control of the growth-strain method makes Tsai-Hill failure index at each element uniform in laminated composites under the initial volume. Then shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminated composite plate, (2) The optimal shapes on the various load conditions and cutouts were obtained, (3) The maximum Tsai-Hill failure index was reduced up to 67% when shape optimization was performed under the initial volume by volume control of growth-strain method.

Marguerre shell type secant matrices for the postbuckling analysis of thin, shallow composite shells

  • Arul Jayachandran, S.;Kalyanaraman, V.;Narayanan, R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.41-58
    • /
    • 2004
  • The postbuckling behaviour of thin shells has fascinated researchers because the theoretical prediction and their experimental verification are often different. In reality, shell panels possess small imperfections and these can cause large reduction in static buckling strength. This is more relevant in thin laminated composite shells. To study the postbuckling behaviour of thin, imperfect laminated composite shells using finite elements, explicit incremental or secant matrices have been presented in this paper. These incremental matrices which are derived using Marguerre's shallow shell theory can be used in combination with any thin plate/shell finite element (Classical Laminated Plate Theory - CLPT) and can be easily extended to the First Order Shear deformation Theory (FOST). The advantage of the present formulation is that it involves no numerical approximation in forming total potential energy of the shell during large deformations as opposed to earlier approximate formulations published in the literature. The initial imperfection in shells could be modeled by simply adjusting the ordinate of the shell forms. The present formulation is very easy to implement in any existing finite element codes. The secant matrices presented in this paper are shown to be very accurate in tracing the postbuckling behaviour of thin isotropic and laminated composite shells with general initial imperfections.

Shear capacity equation for channel shear connectors in steel-concrete composite beams

  • Paknahad, Masoud;Shariati, Mahdi;Sedghi, Yadollah;Bazzaz, Mohammad;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.483-494
    • /
    • 2018
  • In this research the effect of high strength concrete (HSC) on shear capability of the channel shear connectors (CSC) in the steel concrete composite floor system was estimated experimentally and analytically. The push-out test was carried out for assessing the accurateness of the proposed model (nonlinear and finite element model) for the test specimens. A parametric analysis was conducted for predicting the shear capacity of the connectors (CSC) in the HSC. Eight push-out specimens of different sizes with different strength levels were tested under the monotonic loading system. The aim of this study was to evaluate the efficacy of the National Building Code of Canada (NBC) of Canada for analysing the loading abilities of the CSC in the HSC. Using the experimental tests results and verifying the finite element results with them, it was then confirmed by the extended parametric studies that the Canadian Design Code was less efficient for predicting the capacity of the CSC in the HSC. Hence, an alternative equation was formulated for predicting the shear capacity of these connectors during the inclusion of HSC for designing the codes.

Damage propagation in CFRP laminates subjected to low velocity impact and static indentation

  • Aoki, Yuichiro;Suemasu, Hiroshi;Ishikawa, Takashi
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.45-61
    • /
    • 2007
  • This paper describes a damage accumulation mechanism in cross-ply CFRP laminates $[0_2/90_2]_{2S}$ subjected to out-of-plane loading. Drop-weight impact and static indentation tests were carried out, and induced damage was observed by ultrasonic C-scan and an optical microscope. Both tests gave essentially the same results for damage modes, sizes, and load-deformation history. First, a crack occurred in the bottom $0^{\circ}$ layer accompanying some delamination along the crack caused by bending stress. Then, transverse cracks occurred in the middle $90^{\circ}$ layer with decreasing contact force between the specimen and the indenter. Measured local strains near the impact point showed that the stress state changed from a bending dominant state to an in-plane tensile dominant state. A cohesive interface element was used to simulate the propagation of multiple delaminations and transverse cracks under static indentation. Two types of analytical models are considered, one with multiple delaminations and the other with both multiple delaminations and transverse cracks. The damage obtained for the model with only multiple delaminations was quite different from that obtained from the experiment. However, the results obtained from the model with both delaminations and transverse cracks well explain the characteristics of the damage obtained in the experiment. The existence of the transverse cracks is essential to form the characteristic impact damage.

Vibration Analysis of Laminated Composite Corrugated Plates (적층 복합재료 주름판의 진동해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.347-352
    • /
    • 2016
  • This work presents the free vibration characteristics of laminated composite corrugated rectangular plates using the analytical method. Because it is very difficult to determine its mechanical behavior of 3-dimensional corrugated structures analytically, the equivalent homogenization model is adapted to investigate the overall mechanical behavior of corrugated structures. The corrugated element can be homogenized as an orthotropic material. Both the effective extensional and flexural stiffness of this homogenized equivalent orthotropic material are considered in the analysis. The present analytical results are validated by those obtained from 3D finite element analysis based on shell elements. The natural frequencies and global vibration mode shapes obtained from present analytical and finite element analysis are presented. Some numerical results are presented to check the effect of the geometric properties.

Perforation threshold energy of carbon fiber composite laminates

  • Hwang, Shun-Fa;Li, Jia-Ching;Mao, Ching-Ping
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.199-209
    • /
    • 2012
  • Two carbon fiber composite laminates, $[0/90]_{2S}$ and $[0/+45/90/-45]_S$, were considered in this work to find out the perforation threshold energy to complete the perforation process and the corresponding maximum contact force. Explicit finite element commercial software, LS-DYNA, was used to predict these values. According to the simulation results, these two types of composite laminates were tested by using a vertical drop-weight testing machine. After testing, the damage condition of these specimens were observed and compared with the results from finite element analysis. The testing results indicate that the perforation threshold energy is 6 Joules for $[0/90]_{2S}$ and 7 Joules for $[0/+45/90/-45]_S$, which is in good agreement with the simulation results. Also, the maximum contact force at the case of perforation threshold energy is the lowest as compared to the maximum contact forces occurring at the impact energy that is larger or less than the perforation threshold energy.

Study on Material Properties of Composite Materials using Finite Element Method (유한요소법을 이용한 복합재의 물성치 도출에 대한 연구)

  • Jung, Chul-Gyun;Kim, Sung-Uk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.61-65
    • /
    • 2016
  • Composites are materials that are widely used in industries such as automobile and aircraft. The composite material is required as a material for using in a high temperature environment as well as acting as a high pressure environment like the nozzle part of the ship. It is important to know the properties of composites. Result values obtained substituting the properties of matrix and fiber numerically have an large error compared with experimental value. In this study we utilize CASADsolver EDISON program for using Finite Element Method. Properties by substituting the fiber and Matrix properties of the composite material properties were compared with those measured in the experiment and calculated by the empirical properties.