• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.034 seconds

Effects of the stiffness of an inclusion on the mechanical behavior of an aluminum alloy plate with a lateral notch

  • Moulgada Abdelmadjid;Zagane Mohammed El Sallah;Murat Yaylaci;Ait Kaci Djafar;Benouis Ali;Baltach Abdelghani;Sevval Ozturk;Mehmet Emin Ozdemir;Ecren Uzun Yaylaci
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.63-72
    • /
    • 2024
  • This study delves into the interaction dynamics between lateral notches and inclusions, providing valuable insights for more effective engineering of structural components. By employing the finite element method, the research analyzes how inclusions affect the dimensions and contours of the plastic zone under confined plasticity conditions. Several parameters were investigated, including loading influence, the distance between the inclusion and notch tip, inclusion stiffness, and the distribution of Von Mises stress, as well as normal stresses σxx and σyy, and Comparison between different stresses. Examining stress distributions under varying loading conditions reveals a significant intensification, particularly near the crack tip. Moreover, the presence of an inclusion near the notch base reduces both the size and shape of the plastic zone. The distribution of the stresses for different loads knows an increase in intensity, especially near the crack head, which is the most requested by the tensile forces on its upper part, which can cause either the crack's initiation or opening, inducing significant stresses.

Fire Behavior of Reinforced Concrete Filled Square Steel Tube Columns Under Constant Axial Loads

  • Jeeyoung Lee;Seulgi Han;Jinwon Shin;Inrak Choi;Sungmo Choi
    • International Journal of High-Rise Buildings
    • /
    • v.13 no.1
    • /
    • pp.85-95
    • /
    • 2024
  • A composite member made of concrete-filled steel tubes (CFT columns) has been recognized for its fire resistance due to the thermal mass effect of concrete inside the steel tube, as shown in various studies. In this study, the fire resistance performance of reinforced CFT columns under constant axial load was evaluated using finite element analysis with ABAQUS. For this purpose, the variables including cross-section size, steel tube thickness, and concrete cover thickness were set, and the temperature distribution in the column cross-section exposed to a standard fire was investigated using heat transfer analysis. Ultimately, a P-M interaction curve was obtained by evaluating the overall residual strength of columns, and the fire resistance time was determined by evaluating axial displacement-time responses due to the reduction in load capacity during fire through stress analysis.

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Hossein Taghipoor;Mahdi Sefidi
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.159-181
    • /
    • 2024
  • In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.

Research on seismic performance of regionally confined concrete circular column with trapezoid stirrups

  • Longfei Meng;Hao Su;Yanhua Ye;Haojiang Li
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.587-600
    • /
    • 2024
  • In order to investigate the seismic performance of regionally confined concrete circular column with trapezoid stirrups (TRCCC) under high axial compression ratio, the confinement mechanism of regionally confined concrete was analyzed. Three regionally confined concrete circular columns with trapezoid stirrups were designed, and low cyclic loading tests were conducted at three different axial compression ratios (0.9, 1.1, 1.25) to study the failure mode, hysteresis curve, skeleton curve, deformation capacity, stiffness degradation and energy dissipation capacity of the specimens. The results indicate that the form of regional confinement concrete provides more uniform confinement to the normal confinement, and the confinement efficiency at the edges is 1.4 times that of normal confined concrete. The ductility coefficients of the specimens were all greater than 3 under high axial compression ratios, and the stiffness and horizontal bearing capacity increased with the increase of axial compression ratio. Therefore, it is recommended that the code of design specifications can appropriately relax the axial compression ratio limit for TRCCC. Finally, the spacing between stirrups of TRCCC was analyzed using ABAQUS software. The results showed that as the spacing between the stirrups decreased, the cracking load and peak load of TRCCC increased continuously, but the rate of increase decreases.

Elastic distortional buckling of cold-formed steel Z-Beams with stiffened holes using reduced thickness

  • Nasam S. Khater;Mahmoud H. El-Boghdadi;Nashwa M. Yossef
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.225-241
    • /
    • 2024
  • For several reasons, cold-formed steel (CFS) beams are often manufactured with holes. Nevertheless, because of holes, the reduction in the web area causes a decrease in the bending strength. Edge stiffeners are presently added around the holes to improve the bending strength of flexural members. Therefore, this research studies CFSZ-beams with stiffened holes and investigates how edge stiffener affects bending strength and failure modes. Nonlinear analysis was carried out using ABAQUS software and the developed finite element (FE) model was verified against tests from previous studies. Using the verified FE model, a parametric study of 104 FE models was conducted to investigate the influence of key parameters on bending strength of Z- sections. The results indicated that the effect of holes is less noticeable in very thin Z-sections. Moreover, adding edge stiffeners around the holes improves the flexural capacity of Z-beams and sometimes restores the original bending capacity. Because the computational techniques used to solve the CFS buckling mode with stiffened holes are still unclear, a numerical method using constrained and unconstrained finite strip method (CUFSM) software was proposed to predict the elastic distortional buckling moment for a wide variety of CFSZ-sections with stiffened holes. A numerical method with two procedures was applied and validated. Upon comparison, the numerical method accurately predicted the distortional buckling moment of CFS Z-sections with stiffened holes.

The U-frame concept to assess the stability of chords of Warren-truss bridges with independent cross-beam decks

  • Wojciech Siekierski
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.77-87
    • /
    • 2024
  • Analytical methods for assessment of the out-of-plane buckling of unbraced top chords of truss bridges may look obsolete while comparing them to finite element analysis. However they are, usually, superior when rapid assessment is necessary. Analytical methods consider the top chord as a bar on elastic supports provided by bracing (Holt, Timoshenko). Correct assessment of the support elasticity (stiffness) is crucial. In the case of truss bridge spans of traditional structural layout (cross-beams at the truss chord nodes only), the elasticity may be set based on the analysis of the, so called, U-frame stiffness. Here the analyses consider the U-frame itself (a pair of verticals and a cross-beam) or the U-frame with adjacent diagonals or the pair of diagonals (in the absence of verticals) and the members of the bottom chord in the adjacent panels. For all the cases, the stability analysis of the chord as a bar in compression is necessary. Unfortunately, the method cannot be applied to contemporary truss bridges without verticals, that usually have independent cross-beam decks (the cross-beams attached to truss chords at their nodes and between them). This is the motivation for the analysis resulting in the method of setting the stiffness of the equivalent U-frame for the aforementioned truss bridges. Truss girders of both, gussetless and gusseted, joints are taken into account.

Behavior of structures repaired by hybrid composite patches during the aging of the adhesive

  • Habib Achache;Rachid Zahi;Djaafar Ait Kaci;Ali Benouis
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.135-147
    • /
    • 2024
  • The objective of this study is to analyze, using the finite element method, the durability of damaged and repaired structures under the effect of mechanical loading coupled with environmental conditions (water absorption and/or temperature). The study is based on the hybrid patch repair technique, considering several parameters based on the J integral to observe the behavior of the adhesive in transferring load from a damaged plate to the repair patch. The results clearly show that water absorption and increased temperature cause degradation of the mechanical properties of the adhesive, leading to an increase in its plasticization, which is beneficial for the assembly's strength. However, the degradation of the adhesive's properties due to aging in the repair results in poor load transfer from the damaged area to the patch. The findings of this study allowed the authors to conclude that the [0°]8 sequence consistently offers the best performance, with the lowest J integral values and superior crack resistance. The lowest the J integral for the [0°]8 stacking sequence is typically 3-7% lower than that of the [0/-45/45/90]S and [0/-45/90/45]S sequences at elevated temperatures. At 60℃, the J integral increases by approximately 3-6% compared to 40℃ and 20, depending on the aging duration and stacking sequences.

Seismic performance evaluation of an external steel frame retrofit system

  • Michael Adane;Hyungoo Kang;Seungho Chun;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.549-562
    • /
    • 2024
  • In this study a steel moment frame system to be installed on the exterior surface of an existing structure is proposed as a seismic retrofit device. The seismic performance of the retrofit system was investigated by installing it on the exterior of a single story single bay reinforced concrete frame and testing it under cyclic loading. The cyclic loading test results indicated that the steel frame significantly enhanced the strength and ductility of the bare structure. Finite element analysis was carried out to validate the test results, and it was observed that there was good agreement between the two results. An analytical model was developed in order to apply the retrofit system to an example structure subjected to seven mainshock-aftershock sequential earthquake records. It was observed that the model structure was severely damaged due to the mainshock earthquakes, and the seismic response of the model structure increased significantly due to the subsequent aftershock earthquakes. The seismic retrofit of the model structure using the proposed steel frame turned out to be effective in decreasing the seismic response below the given limit state.

Trends in Predicting Thermoforming-Induced Deformation of Thermoplastic Composites: A Review (열가소성 복합재의 열성형 변형 예측 연구 동향)

  • Solmi Kim;Dong-Hyeop Kim;Sang-Woo Kim;Soo-Yong Lee
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.275-285
    • /
    • 2024
  • This paper presents research trends in predicting the deformation of carbon fiber reinforced thermoplastic (CFRTP) composites during thermoforming. Various thermoforming variables that must be considered during the CFRTP thermoforming stages are investigated, and factors influencing process-induced deformation are analyzed. Key material behavior models, such as crystallinity and viscoelastic, which are important for predicting thermoforming deformation, are also examined. Additionally, trends in predicting CFRTP thermoforming deformation using finite element analysis with material behavior models and machine learning techniques are analyzed. In summary, more precise prediction techniques for thermoforming deformation can be developed by associating them with material behavior models and considering thermoforming variables.

Parametric Study on design Variables of Rectangular Concrete Filled Tubular Columns with High-Strength Steel (유한요소해석에 의한 고강도 강재를 사용한 각형 콘크리트 충전 강관 기둥의 설계인자 분석)

  • Choi, Hyun-Ki;Bae, Baek-Il;Choi, Yun-Cheol;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.10-21
    • /
    • 2015
  • For the safe design of steel-concrete composite structure, usable yield strength of steels are limited in most of design standard. However, this limitation sometimes cause the uneconomical design for some kind of members such as slender columns which was affected by elastic buckling load. For the economical design for slender columns, parametric study of RCFT (Rectangular CFT) with high-strength steel is conducted, especially investigating the limitation of yield strength of high-strength steels. Using ABAQUS, finite element analysis program, the finite element model was constructed and calibrated with experimental study for RCFT with high strength steel which have yield strength up to 680MPa. Investigated design parameters are yield strength of steel, compressive strength of concrete, steel thickness and slenderness ratio. The effect of design parameters were compared with design standard, KBC-09. From the parametric study with 54 models and previous test specimens, RCFT can be safely design with higher yield strength of steels than currently limited by KBC for large range of slenderness ratio.