• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.025 seconds

Nonlinear Finite Element Analysis of Composite Girder with Concrete Infilled Tube (콘크리트 충전 강관을 갖는 프리스트레스트 합성형 거더의 강-콘크리트 계면 거동)

  • Shin, Dong-Hun;Kim, Young-Hoon;Lee, Ta;Kang, Byeong-Su;Lee, Yong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.386-389
    • /
    • 2006
  • Prestressed composite girder bridges with concrete infilled steel tube at negative flexural moment region takes the advantages of enhancing local buckling and flexural resistances resulting from the lateral confining effect of concrete due to the interactive reaction in the interface layer of steel tube and concrete. The interface behavior in concrete infilled tube of the test composite girder is analyzed by 8-node zero thickness interface finite element combined with 3-D. elastoplastic concrete constitutive model and 3-D. elastoplastic Mindlin shell element. The interface effects between infillled concrete and steel tube are investigated through the comparision of the experimental and numerical results.

  • PDF

The Evaluation of Mechanical Properties of TiNi/Al 6061 Shape Memory Composites by Using Experimental and Finite Element Analysis (TiNi/Al 6061 형상기억복합재료의 기계적특성에 관한 실험 및 해석적 평가)

  • 박동성;박영철;이동화;이규창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.687-691
    • /
    • 2001
  • Al alloy matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by hot pressing to investigate mechanical properties. The stress-strain behavior of the composites was evaluated at temperatures between 363K and room temperature as a function of pre-strain by using experimental and finite element analysis, and both cases showed that the tensile stress at 363K was higher than that of the room temperature. Especially, the tensile stress of this composite increases with increasing the amount of pre-strain, and it also depends on the volume fraction of fiber and heat treatment. The smartness of the composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being pre-strained.

  • PDF

Multidisciplinary Design of Floor Plates with Holes Through Finite Element Method (천공 바닥마감재의 유한요소법을 통한 다분야통합설계)

  • Yoo, Hong-Hee;Lee, Chang-Geun;Yoo, Hong-Geol;Seo, Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.144-150
    • /
    • 2003
  • Pleasantness or quietness becomes one of the most important factors for residential and office building designs recently. Especially for apartments, the noise generated by falling objects becomes a sensitive issue these days. To overcome the problem of the impact noise in apartments, the floor design has been changed. To reduce the transmissibility of the noise. composite floor structures ate devised and implemented for the construction of apartments. In this paper. the noise reduction) performance of a composite floor plate with holes is analyzed. Computational models for the structures are developed and its Performance is evaluated by using the finite element method. The results show that the noise can be significantly reduced with the multi-layer composite floor plates with holes.

A new formulation of the J integral of bonded composite repair in aircraft structures

  • Serier, Nassim;Mechab, Belaid;Mhamdia, Rachid;Serier, Boualem
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.745-755
    • /
    • 2016
  • A three-dimensional finite element method is used for analysis of repairing cracks in plates with bonded composite patch in elastic and elastic plastic analysis. This study was performed in order to establish an analytical model of the J-integral for repair crack. This formulation of the J-integral to establish models of fatigue crack growth in repairing aircraft structures. The model was developed by interpolation of numerical results. The obtained results were compared with those calculated with the finite element method. It was found that our model gives a good agreement of the J-integral. The arrow shape reduces the J integral at the crack tip, which improves the repair efficiency.

Stochastic free vibration analysis of smart random composite plates

  • Singh, B.N.;Vyas, N.;Dash, P.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.481-506
    • /
    • 2009
  • The present study is concerned with the stochastic linear free vibration study of laminated composite plate embedded with piezoelectric layers with random material properties. The system equations are derived using higher order shear deformation theory. The lamina material properties of the laminate are modeled as basic random variables for accurate prediction of the system behavior. A $C^0$ finite element is used for spatial descretization of the laminate. First order Taylor series based mean centered perturbation technique in conjunction with finite element method is outlined for the problem. The outlined probabilistic approach is used to obtain typical numerical results, i.e., the mean and standard deviation of natural frequency. Different combinations of simply supported, clamped and free boundary conditions are considered. The effect of side to thickness ratio, aspect ratio, lamination scheme on scattering of natural frequency is studied. The results are compared with those available in literature and an independent Monte Carlo simulation.

Nonlinear Numerical Analysis and Experiment of Composite Laminated Plates (복합재 적층판재의 비선형 수치해석 및 실험)

  • 조원만;이영신;윤성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2915-2925
    • /
    • 1993
  • A finite element program using degenerated shell element was developed to solve the geometric, material and combined nonlinear behaviors of composite laminated plates. The total Lagrangian method was implemented for geometric nonlinear analysis. The material nonlinear behavior was analyzed by considering the matrix degradation due to the progressive failure in the matrix and matrix-fiber interface after initial failure. The results of the geometric nonlinear analyses showed good agreements with the other exact and numerical solutions. The results of the combined nonlinear analyses considered both geometric and material nonlinear behaviors were compared to the experiments in which a concentrated force was applied to the center of the square laminated plate with clamped four edges.

Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM

  • Narwariya, Manoj;Choudhury, Achintya;Sharma, Avadesh K.
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.113-132
    • /
    • 2018
  • This paper presents the vibration and harmonic analysis of orthotropic laminated composite plate. The response of plate is determined using Finite Element Method. The eight noded shell 281 elements are used to analyze the orthotropic plates and results are obtained so that the right choice can be made in applications such as aircrafts, rockets, missiles, etc. to reduce the vibration amplitudes. Initially the model response for orthotropic plate and harmonic response for isotropic plate is verified with the available literature. The results are in good agreement with the available literature. Numerical results for the natural frequency and harmonic response amplitude are presented. Effects of boundary conditions, thickness to width ratio and number of layers on natural frequency and harmonic response of the orthographic plates are also investigated. The natural frequency, mode shape and harmonic analysis of laminated composite plate has been determined using finite element package ANSYS.

A Finite Element Investigation of the Permittivity of Particulates (유전체 상수의 유한요소 시뮬레이션)

  • Braunstein, Jeffrey;Kwak, Yong-Soo;Kim, Hyeong-Seok;Park, Jun-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2297-2299
    • /
    • 2005
  • In this paper, a finite element (FEM) investigation of composite materials is studied. A pemittivity profile of the material is implemented to correspond to the Packing fraction of the physical composite. Curve fitting is applied to the standing wave pattern to determine the effective attenuation coefficient and propagation constant in the composite. The complex permittivity as a function of packing density is then determined. A comparison between the two dimensional and three dimensional measurement simulations is presented. An adaptive scheme is implemented to improve resolution of the finite element particulates.

  • PDF

A Study on the Characteristics of Linear Ultrasonic Motor Using Metal-Ceramics Composite Structure (금속-세라믹 복합구조 선형 초음파 모터의 특성 연구)

  • Lee, Jae-Hyung;Choi, Myeong-Il;Jeong, Dong-Seok;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.80-83
    • /
    • 2002
  • In this study, a single phase driven piezoelectric motor design is presented for linear motion-metal/ ceramics composite structure. Using ANSYS finite element analysis software, mode shape of free motor was obtained to clarify the working principle of this motor. And characteristics of the motor was measured. The motor is composed of a piezoelectric ceramic, a metal ring which has 4 arms, and a guider. The motor with 25.0[mm] diameter was studied by finite element analysis and experimentation too. As a result, the motor was expressed the best speed in resonance frequency. And according as voltage of the motor increase, the speed increased by ratio.

  • PDF

The Size Effect in Particulate Composite Materials - Size - Dependent Plasticity (입자보강 복합재료에서 크기효과 -Size-Dependent 소성역학)

  • Kim S. H.;Huh H.;Hahn H. Thomas
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.167-170
    • /
    • 2005
  • This paper briefly reviews various existing methods to account for the effect of particle size on mechanical properties of particulate metal matrix composites. A simple and easy method is to use a size-dependent constitutive equation for the matrix. The suggested method does not require the development of a new computational algorithm and is compatible with any standard finite element software. Finite element analyses have been carried out to show how the deformation behavior of a metal matrix composite changes as the particle size and volume fraction are varied.

  • PDF