• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.035 seconds

Development of Ultralight Composite Wheelchair Frame (초경량 복합재 의자차 차체 개발)

  • 강지호;김수현;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.215-218
    • /
    • 2002
  • In this paper, we applied composite material of high specific stiffness and strength to the fabrication of a folding wheelchair frame for the replacement of conventional metal wheelchair frames. A one-body composite frame was designed and the finite element analysis was performed on this design. Some specimens of joint parts were manufactured and strength test was done. With the results of analysis and test, some modification was done and a prototype was produced.

  • PDF

Material and Geometric Nonlinear Analysis of Plane Structure Using Co-rotational Fiber-section Beam Elements (동시회전의 화이버 단면 보 요소를 이용한 평면 구조물의 재료 및 기하 비선형 해석)

  • Kim, Jeongsoo;Kim, Moon Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.255-263
    • /
    • 2017
  • This paper presents a beam element capable of conducting material and geometric nonlinear analysis for applications requiring the ultimate behavioral analysis of structures with composite cross-sections. The element formulation is based on co-rotational kinematics to simulate geometrically nonlinear behaviors, and it uses the fiber section method to calculate the stiffness and internal forces of the element. The proposed element was implemented using an in-house numerical program in which an arc-length method was adopted to trace severe nonlinear responses(such as snap-through or snapback), as well as ductile behavior after the peak load. To verify the proposed method of element formulation and the accuracy of the program that was used to employ the element, several numerical studies were conducted and the results from these numerical models were compared with those of three-dimensional continuum models and previous studies, to demonstrate the accuracy and computational efficiency of the element. Additionally, by evaluating an example case of a frame structure with a composite member, the effects of differences between composite material properties such as the elastic modulus ratio and strength ratio were analyzed. It was found that increasing the elastic modulus of the external layer of a composite cross-section caused quasi-brittle behavior, while similar responses of the composite structure to those of homogeneous and linear materials were shown to increase the yield strength of the external layer.

Analytical model for the composite effect of coupled beams with discrete shear connectors

  • Zheng, Tianxin;Lu, Yong;Usmani, Asif
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.369-389
    • /
    • 2014
  • Two-layer coupled or composite beams with discrete shear connectors of finite dimensions are commonly encountered in pre-fabricated construction. This paper presents the development of simplified closed-form solutions for such type of coupled beams for practical applications. A new coupled beam element is proposed to represent the unconnected segments in the beam. General solutions are then developed by an inductive method based on the results from the finite element analysis. A modification is subsequently considered to account for the effect of local deformations. For typical cases where the local deformation is primarily concerned about its distribution over the depth of the coupled beam, empirical modification factors are developed based on parametric calculations using finite element models. The developed analytical method for the coupled beams in question is simple, sufficiently accurate, and suitable for quick calculation in engineering practice.

Nonlinear inelastic analysis of steel-concrete composite beam-columns using the stability functions

  • Park, Jung-Woong;Kim, Seung-Eock
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.763-785
    • /
    • 2008
  • In this study, a flexibility-based finite element method considering geometric and material nonlinearities is developed for analyzing steel-concrete frame structures. The stability functions obtained from the exact buckling solution of the beam-column subjected to end moments are used to accurately capture the second-order effects. The proposed method uses the force interpolation functions, including a moment magnification due to the axial force and lateral displacement. Thus, only one element per a physical member can account for the interaction between the bending moment and the axial force in a rational way. The proposed method applies the Newton method based on the load control and uses the secant stiffness method, which is computationally both efficient and stable. According to the evaluation result of this study, the proposed method consistently well predicts the nonlinear inelastic behavior of steel-concrete composite frames and gives good efficiency.

Non-Linear dynamic pulse buckling of laminated composite curved panels

  • Keshav, Vasanth;Patel, Shuvendu N.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.181-190
    • /
    • 2020
  • In this paper, non-linear dynamic buckling behaviour of laminated composite curved panels subjected to dynamic in-plane axial compressive loads is studied using finite element methods. The work is carried out using the finite element software ABAQUS. The curved panels are modelled with S4R element and the nonlinear dynamic equilibrium equations are solved using the ABAQUS/Explicit algorithm. The effect of aspect ratio, radius of curvature and thickness are studied. The importance of orientation of plies in the direction of loading is also reiterated in this study. Vol'mir's criterion is used to calculate the dynamic buckling loads. The panels are subjected to rectangular pulse load of various amplitude and durations and the responses are observed. For particular loading amplitude, a critical value of loading duration is observed beyond which the variation of dynamic buckling load is insignificant. It is also observed that, the value of dynamic bucking load reduces as the loading duration is increased though the reduction is not much after a particular loading duration.

Analysis of Free Vibration and Damping Characteristics of a Composite Plate by Using Modified 3-Dimensional 16-Node Elements (수정된 3차원 16절점 요소에 의한 복합재 판의 자유진동 및 감쇠특성 해석)

  • 윤태혁;김상엽;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.990-1004
    • /
    • 1995
  • A modified 16-node element for composite plate has been proposed and compared with the 20-node element to check the validity of it. The fields of numerical inspection include mode analysis and specific damping analysis. By symetrizing the conventional unsymmetric damping matrix in the analysis of specific damping capacity, we could compute the specific damping capacity and make a program, effectively. In addition, we could predict the errors caused by reduction of integration order in thickness direction depending upon the number of layers.

Development of Damage Detection Technique in Laminated Composites using Tapping Sound (타격음을 이용한 복합재료 구조물의 손상탐지법의 개발)

  • 김승조;황준석;송준영
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.171-174
    • /
    • 2000
  • In this paper, impact sound realization of composite structures is performed to investigate the possibility of a new NDE system - Tapping Sound Analysis (TSA). TSA detects the existence of damages inside the structures by comparing tapping sound with pre-computed sound data of healthy structures. Tapping on the structures is modeled as impact problem and solved using finite element method. Calculation of sound is formulated based on the coupled finite element and boundary element method. Numerical simulation of impact sound and feature extraction scheme show that the impact sound can be used in the identification of damages of laminated composites.

  • PDF

Nonlinear Numerical Analysis and Experiment of Composite Laminated Shell (복합재 적층셸의 비선형 수치해석 및 실험)

  • 조원만;이영신;윤성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2051-2060
    • /
    • 1993
  • A finite element program using degenerated shell element was developed to solve the geometric, material and combined nonlinear behaviors of composite laminated shell. The total Lagrangian method was implemented for geometric nonlinear analysis. The material nonlinear behavior was analyzed by considering the matrix degradation due to the progressive failure in the matrix and matrix-fiber interface after initial failure. The result of the geometric nonlinear analysis showed good agreement with the other exact and numerical solutions. The results of the combined analyses considered both geometric and material nonlinear analyses were compared with the experiments in which internal pressure was applied to the filament wound antisymmetric tubes.

A C0 finite element investigation for buckling of shear deformable laminated composite plates with random material properties

  • Singh, B.N.;Iyengar, N.G.R.;Yadav, D.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.1
    • /
    • pp.53-74
    • /
    • 2002
  • Composites exhibit larger dispersion in their material properties compared to conventional materials due to larger number of parameters associated with their manufacturing processes. A $C^0$ finite element method has been used for arriving at an eigenvalue problem using higher order shear deformation theory for initial buckling of laminated composite plates. The material properties have been modeled as basic random variables. A mean-centered first order perturbation technique has been used to find the probabilistic characteristics of the buckling loads with different edge conditions. Results have been compared with Monte Carlo simulation, and those available in literature.

Multiple cutout optimization in composite plates using evolutionary structural optimization

  • Falzon, Brian G.;Steven, Grant P.;Xie, Mike Y.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.609-624
    • /
    • 1997
  • The optimization of cutouts in composite plates was investigated by implementing a procedure known as Evolutionary Structural Optimization. Perforations were introduced into a finite element mesh of the plate from which one or more cutouts of a predetermined size were evolved. In the examples presented, plates were rejected from around each evolving cutout based on a predefined rejection criterion. The limiting ply within each plate element around the cutout was determined based on the Tsai-Hill failure criterion. Finite element plates with values below the product of the average Tsai-Hill number and a rejection criterion were subsequently removed. This process was iterated until a steady state was reached and the rejection criterion was then incremented by an evolutionary rate and the above steps repeated until the desired cutout area was achieved. Various plates with differing lay-up and loading parameters were investigated to demonstrate the generality and robustness of this optimization procedure.