• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.025 seconds

Determining the effective width of composite beams with precast hollowcore slabs

  • El-Lobody, Ehab;Lam, Dennis
    • Structural Engineering and Mechanics
    • /
    • v.21 no.3
    • /
    • pp.295-313
    • /
    • 2005
  • This paper evaluates the effective width of composite steel beams with precast hollowcore slabs numerically using the finite element method. A parametric study, carried out on 27 beams with different steel cross sections, hollowcore unit depths and spans, is presented. The effective width of the slab is predicted for both the elastic and plastic ranges. 8-node three-dimensional solid elements are used to model the composite beam components. The material non-linearity of all the components is taken into consideration. The non-linear load-slip characteristics of the headed shear stud connectors are included in the analysis. The moment-deflection behaviour of the composite beams, the ultimate moment capacity and the modes of failure are also presented. Finally, the ultimate moment capacity of the beams evaluated using the present FE analysis was compared with the results calculated using the rigid - plastic method.

Three-Dimensional Analysis of Composite External Fuel Tank Joint (항공기용 복합재 외부연료탱크 체결부의 3차원 구조해석)

  • Uhm Won-Seop;Jung Jae Woo;Kweon Jin-Hwe;Choi Jin-Ho;Yang Seung-Un;Lee Sang-Kwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.71-74
    • /
    • 2004
  • A composite-aluminum hybrid joint of composite external fuel tank of an aircraft has been analyzed by a 3-dimensional finite element method. Curvature and contact of the joint structure were considered in the analysis. Yamada-Sun failure criteria was utilized for the failure evaluation. A finite element program ABAQUS was used for the nonlinear contact analysis. The joint structure was predicted to be safe in both the test and analysis.

  • PDF

Shear lag prediction in symmetrical laminated composite box beams using artificial neural network

  • Chandak, Rajeev;Upadhyay, Akhil;Bhargava, Pradeep
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.77-89
    • /
    • 2008
  • Presence of high degree of orthotropy enhances shear lag phenomenon in laminated composite box-beams and it persists till failure. In this paper three key parameters governing shear lag behavior of laminated composite box beams are identified and defined by simple expressions. Uniqueness of the identified key parameters is proved with the help of finite element method (FEM) based studies. In addition to this, for the sake of generalization of prediction of shear lag effect in symmetrical laminated composite box beams a feed forward back propagation neural network (BPNN) model is developed. The network is trained and tested using the data base generated by extensive FEM studies carried out for various b/D, b/tF, tF/tW and laminate configurations. An optimum network architecture has been established which can effectively learn the pattern. Computational efficiency of the developed ANN makes it suitable for use in optimum design of laminated composite box-beams.

An equivalent single-layer theory for free vibration analysis of steel-concrete composite beams

  • Sun, Kai Q.;Zhang, Nan;Liu, Xiao;Tao, Yan X.
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.281-291
    • /
    • 2021
  • An equivalent single-layer theory (EST) is put forward for analyzing free vibrations of steel-concrete composite beams (SCCB) based on a higher-order beam theory. In the EST, the effect of partial interaction between sub-beams and the transverse shear deformation are taken into account. After using the interlaminar shear force continuity condition and the shear stress free conditions at the top and bottom surface, the displacement function of the EST does not contain the first derivatives of transverse displacement. Therefore, the C0 interpolation functions are just demanded during its finite element implementation. Finally, the EST is validated by comparing the results of two simply-supported steel-concrete composite beams which are tested in laboratory and calculated by ANSYS software. Then, the influencing factors for free vibrations of SCCB are analyzed, such as, different boundary conditions, depth to span ratio, high-order shear terms, and interfacial shear connector stiffness.

Development of new inner diaphragms for a H-beam and composite box column joint

  • Khan, Mahbub;Uy, Brian;Kim, Jin W
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.363-373
    • /
    • 2022
  • This paper presents an experimental and a numerical investigation of a H-beam - composite box column joint fabricated with two new inner diaphragms and a continuous inner diaphragm. The main objective of the current research project is to investigate the structural performance of the newly developed inner diaphragms under a cyclic loading protocol. Hysteretic behaviour of the composite joints is analysed to investigate the structural performance of the new and continuous inner diaphragms. This paper compares the result of the finite element (FE) models with the new and continuous inner diaphragms against their counterpart experimental results. To produce a design criterion for the newly developed inner diaphragms, yielding or failure area of the inner diaphragms under tensile stress is analysed from the FE results.

Modified DEBA for determining size dependent shear fracture energy of laminates

  • Goodarzi, M. Saeed;Hosseini-Toudeshky, Hossein
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.111-121
    • /
    • 2018
  • It has been argued that fracture energy of composite laminates depends on their thickness and number of layers. In this paper a modified direct energy balance approach (DEBA) has been developed to evaluate the mode-II shear fracture energy for E-glass/Epoxy laminates from finite element model at an arbitrary thickness. This approach considers friction and damage/plasticity deformations using cohesive zone modeling (CZM) and nonlinear finite element modeling. The presence of compressive stress and resulting friction was argued to be a possible cause for the thickness dependency of fracture energy. In the finite element modeling, CZM formulation has been developed with bilinear cohesive constitutive law combined with friction consideration. Also ply element have been developed with shear plastic damage model. Modified direct energy balance approach has been proposed for estimation of mode-II shear fracture energy. Experiments were performed on laminates of glass epoxy specimens for characterization of material parameters and determination of mode-II fracture energies for different thicknesses. Effect of laminate thickness on fracture energy of transverse crack tension (TCT) and end notched flexure (ENF) specimens has been numerically studied and comparison with experimental results has been made. It is shown that the developed numerical approach is capable of estimating increase in fracture energy due to size effect.

Material Property-Estimate Technique Based on Natural Frequency for Updating Finite Element Model of Orthotropic Beams

  • Kim, Kookhyun;Park, Sungju;Lee, Sangjoong;Hwang, Seongjun;Kim, Sumin;Lee, Yonghee
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.481-488
    • /
    • 2020
  • Composite materialsuch as glass-fiber reinforced plastic and carbon-fiber reinforced plastic (CFRP) shows anisotropic property and have been widely used for structural members and outfitings of ships. The structural safety of composite structures has been generally evaluated via finite element analysis. This paper presents a technique for updating the finite element model of anisotropic beams or plates via natural frequencies. The finite element model updates involved a compensation process of anisotropic material properties, such as the elastic and shear moduli of orthotropic structural members. The technique adopted was based on a discrete genetic algorithm, which is an optimization technique. The cost function was adopted to assess the optimization problem, which consisted of the calculated and referenced low-order natural frequencies for the target structure. The optimization process was implemented with MATLAB, which includes the finite element updates and the corresponding natural frequency calculations with MSC/NASTRAN. Material properties of a virtual cantilevered orthotropic beam were estimated to verify the presented method and the results obtained were compared with the reference values. Furthermore, the technique was applied to a cantilevered CFRP beam to successfully estimate the unknown material properties.

Fully nonlinear inelastic analysis of rectangular CFST frames with semi-rigid connections

  • Bui, Van-Tuong;Vu, Quang-Viet;Truong, Viet-Hung;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.497-521
    • /
    • 2021
  • In this study, an effective numerical method is introduced for nonlinear inelastic analyses of rectangular concrete-filled steel tubular (CFST) frames for the first time. A steel-concrete composite fiber beam-column element model is developed that considers material, and geometric nonlinearities, and residual stresses. This is achieved by using stability functions combined with integration points along the element length to capture the spread of plasticity over the composite cross-section along the element length. Additionally, a multi-spring element with a zero-length is employed to model the nonlinear semi-rigid beam-to-column connections in CFST frame models. To solve the nonlinear equilibrium equations, the generalized displacement control algorithm is adopted. The accuracy of the proposed method is firstly verified by a large number of experiments of CFST members subjected to various loading conditions. Subsequently, the proposed method is applied to investigate the nonlinear inelastic behavior of rectangular CFST frames with fully rigid, semi-rigid, and hinged connections. The accuracy of the predicted results and the efficiency pertaining to the computation time of the proposed method are demonstrated in comparison with the ABAQUS software. The proposed numerical method may be efficiently utilized in practical designs for advanced analysis of the rectangular CFST structures.

Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections

  • Wang, Jia;Uy, Brian;Li, Dongxu;Song, Yuchen
    • Steel and Composite Structures
    • /
    • v.36 no.4
    • /
    • pp.427-446
    • /
    • 2020
  • This paper carries out the progressive collapse analysis of stainless steel composite beam-to-column joint sub-models and moment-resisting frames under column removal scenarios. The static flexural response of composite joint sub-models with damaged columns was initially explored via finite element methods, which was validated by independent experimental results and discussed in terms of moment-rotation relationships, plastic hinge behaviour and catenary actions. Simplified finite element methods were then proposed and applied to the frame analysis which aimed to elaborate the progressive collapse response at the frame level. Nonlinear static and dynamic analysis were employed to evaluate the dynamic increase factor (DIF) for stainless steel composite frames. The results suggest that the catenary action effect plays an important role in preventing the damaged structure from dramatic collapse. The beam-to-column joints could be critical components that influence the capacity of composite frames and dominate the determination of dynamic increase factor. The current design guidance is non-conservative to provide proper DIF for stainless steel composite frames, and thus new DIF curves are expected to be proposed.

Studies on Physical Properties of Wood-based Composite Panel with Recycled Tire Chip - Change of Properties on Composite Panel by Mixing Ratio of Combined Materials - (폐타이어를 이용한 목질고무 복합패널의 물성에 관한 연구 - 원료혼합비율에 따른 복합패널의 재질변화 -)

  • Lee, Weon-Hee;Byeon, Hee-Seop;Bae, Hyun-Mi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.70-75
    • /
    • 1998
  • In this paper, the relationships between volumetric mixing ratio of rubber chip and physical and mechanical properties of wood/rubber composite panel was examined in order to investigate the mixture characteristics of wood and rubber chip. Because of the specific gravity of rubber differed from wood chip, physical properties of wood/rubber composite panel was shown very different values by mixing rate of chip element. Specific gravity in air-dry of composite panel was increased rapidly as volumetric percent of rubber chip was increased. Moisture content of composite panel was decreased as volumetric percent of rubber chip element was increased. This results was considered that wood weight is light and porosity material for moisture absorption. Compressive strength and modulus of rupture in bending test were decreased as volumetric percent of rubber chip increased. By mixing ratio control of chip elements, various wood/rubber composite panel can be applicable to every interior materials such as subfloor, playground, and exterior materials such as road blocks for recreational facilities in garden and forest and city parks.

  • PDF