• 제목/요약/키워드: composite element

Search Result 3,065, Processing Time 0.03 seconds

A numerical analysis on the performance of buckling restrained braces at fire-study of the gap filler effect

  • Talebi, Elnaz;Tahir, Mahmood Md.;Zahmatkesh, Farshad;Kueh, Ahmad B.H.
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.661-678
    • /
    • 2015
  • Buckling Restrained Braces (BRB) have been widely used in the construction industry as they utilize the most desirable properties of both constituent materials, i.e., steel and concrete. They present excellent structural qualities such as high load bearing capacity, ductility, energy-absorption capability and good structural fire behaviour. The effects of size and type of filler material in the existed gap at the steel core-concrete interface as well as the element's cross sectional shape, on BRB's fire resistance capacity was investigated in this paper. A nonlinear sequentially-coupled thermal-stress three-dimensional model was presented and validated by experimental results. Variation of the samples was described by three groups containing, the steel cores with the same cross section areas and equal yield strength but different materials (metal and concrete) and sizes for the gap. Responses in terms of temperature distribution, critical temperature, heating elapsed time and contraction level of BRB element were examined. The study showed that the superior fire performance of BRB was obtained by altering the filler material in the gap from metal to concrete as well as by increasing the size of the gap. Also, cylindrical BRB performed better under fire conditions compared to the rectangular cross section.

Experimental investigation for failure analysis of steel beams with web openings

  • Morkhade, Samadhan G.;Gupta, Laxmikant M.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.647-656
    • /
    • 2017
  • This paper presents an experimental study on the behaviour of steel beams with different types of web openings. Steel beams with web openings became progressively more accepted as a well-organized structural form in steel construction since their existence. Their complicated design and profiling method provides better flexibility in beam proportioning for strength, depth, size and location of holes. The objective of this study is to carry out the experiments on steel beams with different types of web openings and performed non-linear finite element (FE) analysis of the beams that were considered in the experimental study in order to determine their ultimate load capacity and failure modes for comparison. Ten full scale models of steel beam with web openings have been tested in the experimental investigation. The finite element method has been used to predict their entire response to increasing values of external loading until they lose their load carrying capacity. FE model of each specimen that is utilized in the experimental studies is carried out. These models are used to simulate the experimental work to verify test results and to investigate the nonlinear behaviour of failure modes such as local buckling, lateral torsional buckling, web-post buckling, shear buckling and Vierendeel bending of beams.

Low-cycle fatigue in steel H-piles of integral bridges; a comparative study of experimental testing and finite element simulation

  • Karalar, Memduh;Dicleli, Murat
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.35-51
    • /
    • 2020
  • Integral abutment bridges (IABs) are those bridges without expansion joints. A single row of steel H-piles (SHPs) is commonly used at the thin and stub abutments of IABs to form a flexible support system at the bridge ends to accommodate thermal-induced displacement of the bridge. Consequently, as the IAB expands and contracts due to temperature variations, the SHPs supporting the abutments are subjected to cyclic lateral (longitudinal) displacements, which may eventually lead to low-cycle fatigue (LCF) failure of the piles. In this paper, the potential of using finite element (FE) modeling techniques to estimate the LCF life of SHPs commonly used in IABs is investigated. For this purpose, first, experimental tests are conducted on several SHP specimens to determine their LCF life under thermal-induced cyclic flexural strains. In the experimental tests, the specimens are subjected to longitudinal displacements (or flexural strain cycles) with various amplitudes in the absence and presence of a typical axial load. Next, nonlinear FE models of the tested SHP specimens are developed using the computer program ANSYS to investigate the possibility of using such numerical models to predict the LCF life of SHPs commonly used in IABs. The comparison of FE analysis results with the experimental test results revealed that the FE analysis results are in close agreement with the experimental test results. Thus, FE modeling techniques similar to that used in this research study may be used to predict the LCF life of SHP commonly used in IABs.

Plastic behavior of circular discs with temperature-dependent properties containing an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Wang, Yun-Che;Novozhilova, Olga V.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.731-743
    • /
    • 2016
  • Plastic behaviors, based on the von Mises yield criterion, of circular discs containing a purely elastic, circular inclusion under uniform temperature loading are studied with the finite element analysis. Temperature-dependent mechanical properties are considered for the matrix material only. In addition to analyzing the plane stress and plane strain disc, a 3D thin disc and cylinder are also analyzed to compare the plane problems. We determined the elastic irreversible temperature and global plastic collapse temperature by the finite element calculations for the plane and 3D problem. In addition to the global plastic collapse, for the elastically hard case, the plane stress problem and 3D thin disc may exhibit a local plastic collapse, i.e. significant pile up along the thickness direction, near the inclusion-matrix interface. The pileup cannot be correctly modeled by the plane stress analysis. Furthermore, due to numerical difficulties originated from large deformation, only the lower bound of global plastic collapse temperature of the plane stress problem can be identified. Without considerations of temperature-dependent mechanical properties, the von Mises stress in the matrix would be largely overestimated.

Bimorph piezoelectric energy harvester structurally integrated on a trapezoidal plate

  • Avsar, Ahmet Levent;Sahin, Melin
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.249-265
    • /
    • 2016
  • A bimorph piezoelectric energy harvester is developed for harvesting energy under the vortex induced vibration and it is integrated to a host structure of a trapezoidal plate without changing its passive dynamic properties. It is aimed to select trapezoidal plate as similar to a vertical fin-like structure which could be a part of an air vehicle. The designed energy harvester consists of an aluminum beam and two identical multi fiber composite (MFC) piezoelectric patches. In order to understand the dynamic characteristic of the trapezoidal plate, finite element analysis is performed and it is validated through an experimental study. The bimorph piezoelectric energy harvester is then integrated to the trapezoidal plate at the most convenient location with minimal structural displacement. The finite element model is constructed for the new combined structure in ANSYS Workbench 14.0 and the analyses performed on this particular model are then validated via experimental techniques. Finally, the energy harvesting performance of the bimorph piezoelectric energy harvester attached to the trapezoidal plate is also investigated through wind tunnel tests under the air load and the obtained results indicate that the system is a viable one for harvesting reasonable amount of energy.

Three-dimensional finite element simulation and application of high-strength bolts

  • Long, Liji;Yan, Yongsong;Gao, Xinlin;Kang, Haigui
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.501-512
    • /
    • 2016
  • High-strength structural bolts have been utilized for beam-to-column connections in steel-framed structural buildings. Failure of these components may be caused by the bolt shank fracture or threads stripping-off, documented in the literature. Furthermore, these structural bolts are galvanized for corrosion resistance or quenched-and-tempered in the manufacturing process. This paper adopted the finite element simulation to demonstrate discrete mechanical performance for these bolts under tensile loading conditions, the coated and uncoated numerical model has been built up for two numerical integration methods: explicit and implicit. Experimental testing and numerical methods can fully approach the failure mechanism of these bolts and their ultimate load capacities. Comparison has also been conducted for two numerical integration methods, demonstrating that the explicit integration procedure is also suitable for solving quasi-static problems. Furthermore, by using precise bolt models in T-Stub, more accurately simulate the mechanical behavior of T-Stub, which will lay the foundation of the mechanical properties of steel bolted joints.

Element loss analysis of concentrically braced frames considering structural performance criteria

  • Rezvani, Farshad Hashemi;Asgarian, Behrouz
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.231-248
    • /
    • 2012
  • This research aims to investigate the structural behavior of concentrically braced frames after element loss by performing nonlinear static and dynamic analyses such as Time History Analysis (THA), Pushdown Analysis (PDA), Vertical Incremental Dynamic Analyses (VIDA) and Performance-Based Analysis (PBA). Such analyses are to assess the potential and capacity of this structural system for occurrence of progressive collapse. Besides, by determining the Failure Overload Factors (FOFs) and associated failure modes, it is possible to relate the results of various types of analysis in order to save the analysis time and effort. Analysis results showed that while VIDA and PBA according to FEMA 356 are mostly similar in detecting failure mode and FOFs, the Pushdown Overload Factors (PDOFs) differ from others at most to the rate of 23%. Furthermore, by sensitivity analysis it was observed that among the investigated structures, the eight-story frame had the most FOF. Finally, in this research the trend of FOF and the FOF to critical member capacity ratio for the plane split-X braced frames were introduced as a function of the number of frame stories.

Numerical modelling of stress and deflection behaviour for welded steel beam-column

  • Soy, Ugur
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • In this study, stress and deflection behaviours of T-type welding joint applied to HE200M steel beam and column were investigated in finite element method (FEM) under different distributed loads. In the 3D-FEM modelling, glue option was used to contact between steel materials and weld nuggets. Geometrical model was designed as 3-dimensional solid in ANSYS software program. After that, homogeneous, linear and isotropic properties were used to design to materials of model. Solid-92 having 3-dimensional, 4 faced and 10-noded was selected as element type. In consequence of mesh operation, elements of 13285 and nodes of 28086 were occurred. Load distribution was applied to top surface of steel beam to determine behaviours of stress and deflection. As a result of FEM analysis applied with the loads of 55,000 N, 110,000 N and 220,000 N, maximum values were obtained as 116 N/$mm^2$, 232 N/$mm^2$ and 465 N/$mm^2$ for stress and obtainedas 1,083 mm, 2,166 mm and 4.332 mm for deflection, respectively. When modelling results and classical calculation values were compared, it was obtained difference of 10 % for stress values and 2.5% for deflection values.

Evaluation of Stability of Lining Systems of Landfill Using Discrete Element Method (개별요소법을 사용한 매립지 사면 차수 시스템의 안정성 평가)

  • 박현일;이승래;정구영
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • In this paper, the discrete element method was applied to evaluate the stability of composite cover and lining system of landfill. This method is capable of estimating the distribution of tensile force and shear stress mobilized in each liner component and its interfaces, based on a relationship of force and displacement. It was assumed that the cover soil and geomembrane were comprised of slices connected with elastoplastic Winkler springs and tensile spring respectively. Parametric study using this method was performed and compared with other techniques based on limit equilibrium method fur the example analysis.

Evaluation of interfacial shear stress in active steel tube-confined concrete columns

  • Nematzadeh, Mahdi;Ghadami, Jaber
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.469-481
    • /
    • 2017
  • This paper aims to analytically investigate the effect of shear stress at the concrete-steel interface on the mechanical behavior of the circular steel tube-confined concrete (STCC) stub columns with active and passive confinement subjected to axial compression. Nonlinear 3D finite element models divided into the four groups, i.e. circumferential-grooved, talc-coated, lubricated, and normal groups, with active and passive confinement were developed. An innovative method was used to simulate the actively-confined specimens, and then, the results of the finite element models were compared with those of the experiments previously conducted by the authors. It was revealed that both the predicted peak compressive strength and stress-strain curves have good agreement with the corresponding values measured for the confined columns. Then, the mechanical properties of the active and passive specimens such as the concrete-steel interaction, longitudinal and hoop stresses of the steel tube, confining pressure applied to the concrete core, and compressive stress-strain curves were analyzed. Furthermore, a parametric study was performed to explore the effects of the concrete compressive strength, steel tube diameter-to-wall thickness ratio, and prestressing level on the compressive behavior of the STCC columns. The results indicate that reducing or removing the interfacial shear stress in the active and passive specimens leads to an increase in the hoop stress and confining pressure, while the longitudinal stress along the steel tube height experiences a decrease. Moreover, prestressing via the presented method is capable of improving the compressive behavior of STCC columns.