• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.029 seconds

Computer Simulation on Insulation Characteristics of Composite Material O-rings (복합소재 O-링 접합계면의 단열특성에 관한 컴퓨터 시뮬레이션)

  • Kim, Chung-Kyun;Kim, Sung-Won;Cho, Seung-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.291-295
    • /
    • 2002
  • O-ring seal is usual component part in various mechanical apparatus for sealing that makes efficient performance of the equipments. The sealing performance of O-ring is affected in environments of the O-rings, like that applied pressure, working temperature, pre-compressed ratio and materials. In this paper, a pressurized, compressed elastomeric bi-polymer O-ring inserted into a rectangular groove is analyzed numerically using the MARC finite element program. The calculated FEM results showed that bi-polymer O-ring that is manufactured by NBR for an inner and FFKM for an outer ring shows a low temperature distribution among various bi-polymer O-ring models. But, the normal contact stress between the flange and upper part of the O-ring is small compared to other bi-polymer model.

  • PDF

Optimal Design of Laminated Composite Beams with Open Cross Section (복합 적층 개단면 보의 최적설계)

  • 배하록;홍순호;신영석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • 복합재 적층판은 중량에 비해 높은 강성과 강도가 요구되는 공학의 다양한 분야에서 매우 유용하다. 보강섬유 복합재의 공학적 활용이 활발해지고, 중량의 감소화가 설계의 중요한 목적이 됨으로써, 근래 복합재 구조물들의 최적화 설계의 중요성이 대두되고 있다. 그러나 복합재 적층 구조물 재료의 비등방성에 의해 해석과 설계가 매우 어렵다. 본 연구에서는 수치적 최적화 방법과 유한요소법을 이용하여 보강섬유 복합재의 최적설계를 하였다. 복합재 적층판으로 이루어진 개단면 보에 있어서 보강섬유의 다양한 적층방향에 대한 거동의 영향을 규명하였다.

  • PDF

Evaluation of structural performance in integrated precast decks for a rapid construction (급속 시공을 위한 일체형 프리캐스트 바닥판의 구조성능 평가)

  • Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.14-19
    • /
    • 2015
  • In this study we developed an integrated precast concrete decks for a rapid construction. The structural performance in the integrated precast bridge decks is evaluated by real-scale test bed and detailed finite element analyses. The numerical analysis results were compared with the experimental data from a real-scaled single-span precast/prestressed concrete bridge decks under truck loading. Parametric studies are focused on the various effects of external loads on the structural behavior for different locations and measuring points on the precast bridge decks. The assessment in this study indicates that the integrated precast bridge decks show an excellent structural performance as expected.

Optimal design of composite pressure vessel for fuel cell vehicle using genetic algorithm (유전자 알고리즘을 이용한 수소 연료 자동차용 복합재 압력용기의 최적설계)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Chun-Gon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.23-27
    • /
    • 2007
  • To store hydrogen with high pressure is one of key technologies in developing FCVs (fuel cell vehicles). Especially, metal lined composite structure, which is called Type 3, is expected to effectively stand highly pressurized hydrogen since it has high specific strength and stiffness as well as excellent storage ability. However, it has many difficulties to design Type 3 vessels because of their complex geometry, fabrication process variables, etc. In this study, therefore, optimal design of Type 3 vessels was performed in consideration of such actual circumstances using genetic algorithm. Additionally, detailed finite element analysis was followed for the optimal result.

  • PDF

Impact response analysis of delaminated composite laminates using analytical solution (이론 해를 이용한 층간 분리된 적층판의 충격거동 해석)

  • Kim, Sung-Joon;Shin, Jeong-Woo;Chae, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.315-320
    • /
    • 2007
  • An analytical solution has been developed for the impact response of delaminated composite plates. The analysis is based on an expansion of loads, displacements, and rotations in a Fourier series which satisfies the end boundary conditions of simply-supported. The analytical formulation adopts the Laplace transformation technique, requiring a linearization of contact deformation. In this paper, the nonlinear contact stiffness is replaced by a linearized stiffness, to provide an estimate of the additional compliance due to contact area deformation effects. It has been shown that defects such as delaminations may be modeled as spring stiffness. The change in the impact characteristics as this spring stiffness has been investigated theoretically. Predicted impact responses using analytical solution are compared with the numerical ones from the 3-D non-linear finite element model. From the results, it is shown that analytical solution was found to be reliable for predicting the impact response.

  • PDF

Free Vibration Analysis of the Composite Cylindrical shells Combined with Interior Partitioned Plate (내부에 판이 결합된 복합재료 원통셀의 자유진동해석)

  • 이영신;최명환;박병준;김현수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.327-333
    • /
    • 1998
  • A method for analysis of the free vibrations of the composite cylindrical shell with a longitudinal, interior rectangular plate is developed by using the receptance method. This method is based on the ratio of a deflection(or slope) response to a harmonic force(or moment) at an joint point. The natural frequencies of the combined shells calculated numerically. The results are compared with the experiment and a finite, element analysis results in order to validate the formulation. The effects of the location and thickness of the plate on the frequencies are also investigated.

  • PDF

Optimization of Piezoceramic Sensor/Actuator Placement for Vibration Control using Gradient Method (구배법을 이용한 진동제어용 압전 감지기/작동기의 위치 최적화)

  • 강영규;박현철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.684-688
    • /
    • 1998
  • Optimization of the collocated piezoceramic sensor/actuator placement is investigated numerically and verified experimentally for vibration control of laminated composite plates. The finite element method is used for the analysis of dynamic characteristics of the laminated composite plates with the piezoceramic sensor/actuator. The structural damping index(SDI) is defined from the modal damping. It is chosen as the objective function for optimization. Weights for each vibrational mode are taken into account in the SDI calculation. The gradient method is used for the optimization. Optimum location of the piezoceramic sensor/actuator is determined by maximizing tie SDI. Numerical simulation and experimental results show that the optimum location of the piezoceramic sensor/actuator is dependent upon the outer layer fiber orientations of the plate, and location and size of the piezoceramic sensor/actuator.

  • PDF

Effective Longitudinal Shear Modulus of Polymeric Composite Using Iosipescu Shear Test (Iosipescu Shear Test를 이용한 고분자 복합재료의 종방향 전단계수 연구)

  • Jeong, Tae-Heon;Kwon, Yong-Su;Lee, You-Tae;Lee, Dong-Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • Effective shear modulus of continuous fiber reinforced polymeric composites is measured using a modified Iosipescu Shear Test(IST) and compared with data obtained by finite element analyses that a concept of unit cell is. It is found that the numerical results of the longitudinal shear modulus give a good agreement with experimental data at lower fiber volume fraction. In this paper, both the distance and stress transfer between the fibers are discussed as the major factors.

  • PDF

Parametric Study for Optimum Shape of Gestation Stall Structures (임신돼지용 스톨 구조물의 최적형상을 위한 파라미터 해석)

  • Son, Byung Jik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.39-44
    • /
    • 2016
  • This study analyzes gestation stall structures with high strength concrete. The ANSYS program described in this paper is effective not only because it shows good accuracy but also it shows the goodness of parameter studies by using APDL(ANSYS Parametric Design Language). We have performed the various parameter studies by thickness change. The results is presented by using contours and tables. The analysis results showed that it was effective to increase the height thickness(tz) rather than longitudinal thickness(tx).

Assessment of Structural Performance for a Lightweight Soundproof Tunnel Composed of Partitioned Pipe Truss Members (격벽화된 파이프 트러스 요소로 구성된 경량방음터널의 구조적 성능 평가)

  • Noh, Myung-Hyun;Ahn, Dong-Wook;Joo, Hyung-Joong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In this paper, the full-size structural performance test for a lightweight soundproof tunnel composed of partitioned pipe truss members is carried out to investigate the structural performance. In addition, a nonlinear structural analysis of the same finite element model as the full-size testing model is performed to compare the test result. The test and analysis results showed that the lightweight soundproof tunnel ensures the structural safety against wind loads, snow loads and load combinations. As a result, the full-size test and analysis results meet all the design load conditions, hence the proposed lightweight soundproof tunnel is ready for the field application.