• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.024 seconds

Behavior of circular thin-walled steel tube confined concrete stub columns

  • Ding, Fa-xing;Tan, Liu;Liu, Xue-mei;Wang, Liping
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.229-238
    • /
    • 2017
  • This paper presents a combined numerical and theoretical study on the composite action between steel and concrete of circular steel tube confined concrete (STCC) stub columns under axial compressive loading with a full theoretical elasto-plastic model and finite element (FE) model in comparison with experimental results. Based on continuum mechanics, the elasto-plastic model for STCC stub columns was established and the analysis was realized by a FORTRAN program and the three dimensional FE model was developed using ABAQUS. The steel ratio of the circular STCC columns were defined in range of 0.5% to 2% to analyze the composite action between steel tube and concrete, and make a further study on the advantages of the circular STCC columns. By comparing the results using the elasto-plastic methods with the parametric analysis result of FE model, the appropriate friction coefficient between the steel tube and core concrete was defined as 0.4 to 0.6. Based on ultimate balance theory, the formula of ultimate load capacity applying to the circular STCC stub columns was developed.

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.734-740
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered In the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton’s principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_3$) coupling. It Is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b}$ /rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.e.

Development of composite torsion shaft for the aircraft structure under multiple load condition (복합하중을 받는 복합소재 중공 토크바 설계)

  • Jeong, Jong-Jae;Kim, Seung-Chul;Kim, Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.484-491
    • /
    • 2016
  • The purpose of this development is weight reduction of hollow type steel torque bar by changing the material from steel to composite. Structure analysis is executed by the finite element model generated by the structural load condition and geometric structure requirement. According to this analysis result, optimized ply sequence and wall thickness are defined. To simulate analysis result, torsion test for composite torque bar was performed. Throughout the test result, the stiffness and strength requirement of composite torque bar was verified.

Low-Velocity Impact Analysis and Contact Law on Composite Laminates (복합적층판에 대한 저속충격해석과 접촉법칙)

  • 최익현
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.50-57
    • /
    • 2003
  • Usually many researchers have used the modified Hertzian contact law or experimental static indentation law to analyze impact response of composite laminates subjected to the low-velocity impact. In this study, physical meaning of the method using the laws was investigated and the difference between the analytical results obtained using the laws was also investigated. Furthermore parametric study on contact constant and exponent in the contact law was performed. Finally it was shown that a linearized contact law can be well applied to low-velocity impact response analysis of composite laminates. If this concept is used, commercial finite element software can be used to solve impact problem without making any auxiliary code.

Numerical simulation of external pre-stressed steel-concrete composite beams

  • Moscoso, Alvaro M.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.191-201
    • /
    • 2017
  • External pre-stressing is often used in strengthening or retrofitting of steel-concrete composite beams. In this way, a proper numerical model should be able to trace the completely nonlinear response of these structures at service and ultimate loads. A three dimensional finite element model based on shell elements for representing the concrete slab and the steel beam are used in this work. Partial interaction at the slab-beam interface can be taken into account by using special beam-column elements as shear connectors. External pre-stressed tendons are modeled by using one-dimensional catenary elements. Contact elements are included in the analysis to represent the slipping at the tendon-deviator locations. Validation of the numerical model is established by simulating seven pre-stressed steel-concrete composite beams with experimental results. The model predictions agree well with the experimental results in terms of collapse loads, path failures and cracking lengths at negative moment regions due to service loads. Finally, the accuracy of some simplified formulas found in the specialized literature to predict cracking lengths at interior supports at service loading and for the evaluation of ultimate bending moments is also examined in this work.

Numerical analysis of steel-soil composite (SSC) culvert under static loads

  • Beben, Damian;Wrzeciono, Michal
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2017
  • The paper presents a numerical analysis of a steel-soil composite (SSC) culvert in the scope of static (dead and live) loads. The Abaqus program based on the finite element method (FEM) was used for calculations. Maximum displacements were obtained in the shell crown, and the largest stresses in the haunches. Calculation results were compared with the experimental ones and previous calculations obtained from the Autodesk Robot Structural Analysis (ARSA) program. The shapes of calculated displacements and stresses are similar to those obtained with the experiment, but the absolute values were generally higher than measured ones. The relative differences of calculated and measured values were in the range of 5-23% for displacements, and 15-42% for stresses. Developed calculation model of the SSC culvert in the Abaqus program allows obtaining reasonable values of internal forces in the culvert. Using both calculation programs, the relative differences for displacements were in the range of 15-39%, and 17-44% for stresses in favour of the Abaqus program. Three design methods (Sundquist-Pettersson, Duncan and CHBDC) were used to calculate the axial thrusts and bending moments. Obtained values were compared with test results. Generally, the design methods have conservative assumptions, especially in the live loads distribution, safety factors and consideration the interaction between soil and steel structure.

Dynamic prediction fatigue life of composite wind turbine blade

  • Lecheb, Samir;Nour, Abdelkader;Chellil, Ahmed;Mechakra, Hamza;Ghanem, Hicham;Kebir, Hocine
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.673-691
    • /
    • 2015
  • In this paper we are particularly focusing on the dynamic crack fatigue life of a 25 m length wind turbine blade. The blade consists of composite materiel (glass/epoxy). This work consisted initially to make a theoretical study, the turbine blade is modeled as a Timoshenko rotating beam and the analytical formulation is obtained. After applying boundary condition and loads, we have studied the stress, strain and displacement in order to determine the critical zone, also show the six first modes shapes to the wind turbine blade. Secondly was addressed to study the crack initiation in critical zone which based to finite element to give the results, then follow the evolution of the displacement, strain, stress and first six naturals frequencies a function as crack growth. In the experimental part the laminate plate specimen with two layers is tested under cyclic load in fully reversible tensile at ratio test (R = 0), the fast fracture occur phenomenon and the fatigue life are presented, the fatigue testing exerted in INSTRON 8801 machine. Finally which allows the knowledge their effect on the fatigue life, this residual change of dynamic behavior parameters can be used to predicted a crack size and diagnostic of blade.

Distribution Factors of Curb Dead Load for New Composite Bridges (신형식 강합성 교량의 연석고정하중 분배계수)

  • Yi, Gyu-Sei
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2702-2707
    • /
    • 2010
  • The load distribution factor (LDF) values of new composite I-beam panel bridges that were subjected to dead load were investigated using three-dimensional finite element analyses with the computer program ABAQUS(2007). This study considered some design parameters such as the slab thickness, the steel-plate thickness, and the span length for design of new composite bridges. The distribution values that were obtained from these analyses were compared with those from the AASHTO Standard, AASHTO LRFD, and the equations presented by Tarhini and Frederick, and Back and Shin. For the simple application of the design, bridge engineers can use the LDF of 0.67 for the exterior girder and of 0.340 for the interior girder.

Design validation of a composite crash absorber energy to an emergency landing

  • Guida, Michele;Marulo, Francesco;Bruno, Massimiliano;Montesarchio, Bruno;Orlando, Salvatore
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.319-334
    • /
    • 2018
  • In this study, the failure mode and energy absorption capabilities of a composite shock absorber device, during an emergency landing are evaluated. The prototype has been installed and tested in laboratory simulating an emergency landing test condition. The crash absorber presents an innovative configuration able to reduce the loads transmitted to a helicopter fuselage during an emergency landing. It consists of a composite tailored tube installed on the landing gear strut. During an emergency landing this crash absorber system should be able to absorb energy through a pre-designed deformation. This solution, compared to an oleo-pneumatic shock absorber, avoids sealing checks, very high values of the shock absorber pressure, and results to be lighter, easy in maintenance, inspect and use. The activities reported in this paper have become an attractive research field both from the scientific viewpoint and the prospect of industrial applications, because they offer benefits in terms of energy absorbing, weight savings, increasing the safety levels, and finally reducing the costs in a global sense.

Design on High Efficiency and Light Composite Propeller Blade of Regional Aircraft (중형항공기급 고효율 경량화 복합재 프로펠러 블레이드 설계 연구)

  • Kong, Chang-Duk;Lee, Kyung-Sun;Park, Hyun-Bum;Choi, Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.253-258
    • /
    • 2012
  • In this study, designs of the high efficiency composite propeller blade for a high speed turboprop aircraft, which will be used for a next generation regional commercial aircraft in Korea, are performed. Both the vortex theory and the blade element theory are used for preliminary aerodynamic design and performance analysis of the propeller. Then the aerodynamic design result is confirmed through performance analysis using a commercial CFD code, ANSYS. The carbon/epoxy composite materials is used, and the skin-spar-foam sandwich type structure is adopted for improvement of lightness and structural stability. Finally, it is investigated that the proposed propeller blade has high efficiency and structural safety through both aerodynamic and structural analysis and experimental test of a prototype propeller blade.

  • PDF