• Title/Summary/Keyword: composite connections

Search Result 383, Processing Time 0.022 seconds

Experimental Study on Bond Stress of Concrete Filled Rectangular Steel Tubular Composite Column Subjected to Axial Load (중심 축 하중을 받는 충전각형강관 합성기둥의 부착응력에 관한연구)

  • Lee, Hyung-Seok;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.105-110
    • /
    • 2003
  • This paper is presented an experimental studies on bond stress between steel and concrete in concrete filled Rectangular steel tubes. In the actual building frames, vertical dead and live loads on beams are usually transferred to columns by beam-to-column connections. In case when concrete filled steel tubes are used as columns of an actual building frame which has a simple connection, shear forces in the beam ends are not directly transferred to the concrete core but directly to the steel tube. Provided that the bond effect between steel tube and concrete core should not be expected, none of the end shear in the beams would be transferred to the concrete core but only to the steel tube. Therefore, it is important to investigate the bond strength between steel tube and concrete core in the absence of shear connectors.

  • PDF

An Analytical Study on the Structural Behavior of Composite Beams (합성보의 거동에 관한 해석적 연구)

  • 황영서;양구록;송준엽;권영봉
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.175-182
    • /
    • 1998
  • An analytical study to trace the nonlinear structural behavior of composite beams is undertaken to include the nonlinear material properties of steel sheeting, reinforcing steel bar and concrete. To trace Moment-curvature relations, sectioning analysis method and two simple formulas are developed. A simple power model which has been originally used to expect the flexural capacity of the beam to column connections is proposed and the second formula is composed of two experimental functions to express the Moment-curvature relation in the elastic and plastic range separately. The load-deflection behavior of the beams has been simulated by the step-by-step numerical integration method and is compared with the test results available.

  • PDF

Seismic Performance of Top and Seat Angle CFT Column-to-Beam Connections with SMA (SMA 적용 상·하부 ㄱ형강 CFT 기둥-보 접합부의 내진성능)

  • Kim, Joo-Woo;Lee, Sung Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.423-434
    • /
    • 2017
  • In this paper a systematic numerical analysis is performed to obtain the hysteresis behavior of partially restrained top and seat angle connections subjected to cyclic loading. This connection includes superelastic shape memory alloy (SMA) angles and rods in order to secure the recentering capacities as well as proper energy dissipation effects of a CFT composite frame. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity and failure modes. A wide scope of additional structural behaviors explain the different influences of the connection's parameters, such as the various thickness of connection angles and the gage distance of steel and SMA rods.

Behavior Evaluation on the Non-symmetric Composite Column for Unit Modular Frames (모듈러 골조용 비대칭 기둥-보 접합부에 대한 거동 평가)

  • Park, Keum-Sung;Lee, Sang-Sup;Bae, Kyug-Woong;Moon, Ji-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • The purpose of this study is to evaluate the structural performance of press-formed type asymmetric column to beam connections of steel-PC composite module frames. Most of the column sections of the joints making up the modular frame use a closed square steel section. The column-beam connection using the closed column section has difficulty in reducing the workability and securing the fire resistance. In order to overcome this disadvantage, concrete is filled in the asymmetrical open type cross section of the steel plate by press forming. A total of four specimens were fabricated to investigate the structural performance of press formed type asymmetric column to beam connections. The experimental results show that the structural performance and behavior of the asymmetric columns are different depending on whether the asymmetric column cross section is composited or the column width thickness ratio. The structural performance of the press formed type asymmetric column to beam connection was evaluated by comparing the experimental results with the theoretical formulas.

The Structural Economical Efficiency Evaluation of Partially Restrained Composite CFT Column-to-Beam Connection (합성반강접 CFT기둥-보 접합부 구조의 경제성 평가)

  • Kim, Sun-Hee;Bang, Jung-Seok;Park, Young-Wook;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2012
  • This study seeks to devise a design application for a beam structure with partially restrained composite connection to a CFT column. A cost-efficient and stable component is applied by adjusting the stiffness ratio of the column connection through partially restrained composite connection. Based on a review of the structure's stability, it was confirmed that in the case of a low-rise building as a moment frame, resistance without bracing is feasible because stiffness increased by virtue of the partial restrained composite connection by composite action. In the case of a high-rise building, lateral resistance load of moment frame was approximately 10% when proper partial restrained rate was at around 60%. With considerations related to economic efficiency, the partial restriction effect of the beam component was significantly activated by the uniform load, but that of the beam activated by concentrated load was not significantly indicative. The analysis indicated that 60% partial restrained girder at the connection was the most economical in the case of uniform load. It also showed that end moments can be reduced by approximately 25%.

A Study on the Structural Behavior of Profiled Composite Beams (박판 냉간성형강 합성보의 구조적 거동에 관한 연구)

  • Yang, Gu Rok;Hwang, Young Seo;Song, Jun Yeup;Kwon, Young Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.143-151
    • /
    • 1999
  • An analytical study on the behavior of composite beams, which are composed of cold-formed profiled steel sheeting and normal strength concrete, is described. An analytical method to trace the nonlinear behavior of a composite beam is developed to include the nonlinear material properties of steel sheeting, reinforcing steel bar and concrete. A simple Power Model has also been proposed for the nonlinear moment-curvature relation of the composite beam. The model, which has been originally used to predict the flexural capacity of the beam to column connections, is adapted to the composite beams. The load-deflection behavior of the beams has been simulated by the step-by-step numerical integration using the moment-curvature relation obtained by the Power Model. The results have been compared with test results.

  • PDF

The Composite Effects of Composite Truss using T-Shaped Steels (T형강을 사용한 합성트러스의 합성효과)

  • Lee, Myung-Jae;Choi, Byong-Jeong;Kim, Hee-Dong;Kang, Duck-Kyung;Sim, Min-Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.599-608
    • /
    • 2010
  • Steel trusses that act compositely with concrete slabs have proven to be an economical system for long-span floors. The composite action is generally achieved by providing shear connections between the steel top chord and the concrete topping. The composite sections have greater stiffness than the sum of the individual stiffnesses of the slab and truss. Therefore, steel trusses that act compositely with concrete slabs can carry larger loads and are stifferand less prone to transient vibration. During the tests that were performed in this study, the crack pattern and deflection of the beam of the composte truss were investigated. The test results were compared with the results for the noncomposite trusses.

Composite $G^{1}$ surface construction from 2D cross-sections (2차원 단면 데이터로부터 복합 $G^{1}$ 자유곡면 생성)

  • Park, Hyung-Jun;Na, Sang-Wook;Bae, Chae-Yeol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.44-47
    • /
    • 2004
  • This paper proposes an approach for composite surface reconstruction from 2D serial cross-sections, where the number of contours varies from section to section. In a triangular surface-based approach taken in most reconstruction methods, a triangular $G^{1}$ surface is constructed by stitching triangular patches over a triangular net generated from the compiled contours. In the proposed approach, the resulting surface is a composite $G^{1}$ surface consisting of three kinds of surfaces: skinned, surface is first represented by a B-spline surface approximating the serial contours of the skinned region and then serial contours of the skinned region and then transformed into a mesh of rectangular Bezier patches. On branched and capped regions, triangular $G^{1}$ surfaces are constructed so that the connections between the triangular surfaces and their neighboring surfaces are $G^{1}$ continuous. Since each skinned region is represented by an approximated rectangular $G^{2}$ surface instead of an interpolated triangular $G^{1}$ surface, the proposed approach can provide more visually pleasing surfaces and realize more efficient data reduction than the triangular surface-based approach. Some experimental results demonstrate its usefulness and quality.

  • PDF

Experimental investigation of the behaviour of a steel sub-frame under a natural fire

  • Santiago, Aldina;Simoes da Silva, Luis;Vaz, Gilberto;Vila Real, Paulo;Lopes, Antonio Gameiro
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.243-264
    • /
    • 2008
  • This paper details a testing facility ("NATURAL FIRE FACILITY") that allows closely-controlled experimental testing on full-scale sub-frames while reproducing the spatially transient temperature conditions measured in real fires. Using this test facility, an experimental investigation of six steel sub-frames under a natural fire was carried out at the Department of Civil Engineering of the University of Coimbra. The main objective of these tests was to provide insight into the influence of these connection types on the behaviour of steel sub-structures under fire. The experimental layout is defined by two thermally insulated HEA300 columns and an unprotected IPE300 beam with 5.7 m span, supporting a composite concrete slab. Beam-to-column connections are representative of the most common joint type used on buildings: welded joints and extended, flush and partial depth plate. Finally, the available results are presented and discussed: evolution of the steel temperature; development of displacements and local deformations and failure modes on the joints zone.

Experimental Study on Shear Connector for Precast Concrete Decks

  • Chung, Chul-Hun;Shim, Chang-Su;Jeong, Un-Yong
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.61-67
    • /
    • 2001
  • For the design of shear connection for the composite precast concrete slabs. it is necessary to investigate its strength, stiffness, slip capacity and fatigue endurance. For theme purposes, push-out tests were performed with variations of the stud shank diameter and the compressive strength of the mortar. From the experimental studies, it could be observed that the deformation of the shear studs in a full-depth precast concrete slabs were greater than those in a cast-in-place slabs. The static strength of the shear connections obtained agree approximately with those evaluated from the tensile strength of the stud shear connectors owing to the effect of the bedding layer between the slabs and the beams. An empirical equation for the initial shear stiffness of a shear connection was also proposed. On the basis of the push-out tests, a full-scale composite beams with 8.0m span was designed and fatigue tests were carried out to study the behaviour of the stud shear connection and its effects on the flexural behaviour of the beam. The bonding arid friction between the concrete slab and the steel beam considerably increased the fatigue endurance of the shear connection.

  • PDF