• 제목/요약/키워드: composite ceramic

검색결과 1,348건 처리시간 0.023초

SiC/SiC 복합재료 세라믹스 표면균열 탐지를 위한 초음파법 적용에 관한 기초연구 (A Feasibility Study on the Application of Ultrasonic Method for Surface Crack Detection of SiC/SiC Composite Ceramics)

  • 남기우;이건찬;향산황
    • 비파괴검사학회지
    • /
    • 제29권5호
    • /
    • pp.479-484
    • /
    • 2009
  • 세라믹스의 비파괴평가 기술은 산업분야에 응용하기 위한 세라믹스 신뢰성 개발에 있어서 필수적인 기술이다. 본 연구는 초음파 C-Scan 방식을 이용하여 SiC 세라믹스의 표면균열을 탐상하기 위한 실험적 연구 결과를 제시하고자 한다. 이를 위해 SDS-win과 $\mu$-SDS 두 종류의 초음파 장치와 25, 50 및 125 MHz의 초음파센서를 이용하여 세라믹스의 표면균열 탐상 가능성에 대해 실험적인 연구를 수행하였다. 본 연구 결과, 세라믹스의 표면미소균열은 결국 25 및 50 MHz 센스로 정밀하게 검출할 수 없었으나, 125 MHz 센서에 의한 집속법 탐상 결과 희미한 형상 정도를 검출할 수 있었으며, 비집속법의 경우는 비커스 압입자의 형상 검출이 가능함을 알 수 있었다. 따라서 본 연구를 통하여, 초음파 C-Scan 집속 및 비집속 방법은 미세균열의 탐상방식으로 어느 정도 접근 가능함을 실험적으로 확인하였다

도전성 ${\beta}-SiC-TiB_2$ 복합체의 특성 (Properties of Electro-Conductive SiC-TiB2 Composites)

  • 신용덕;박미림;송준태;임승혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 춘계학술대회 논문집 전자세라믹스 센서 및 박막재료 반도체재료 일렉트렛트 및 응용기술
    • /
    • pp.72-75
    • /
    • 2000
  • The effect of $Al_2O_3+Y_2O_3$ additives on fracture toughness of ${\beta}-SiC-TiB_2$ composites by hot-pressed sintering were investigated, The ${\beta}-SiC-TiB_2$ ceramic composites were hot-presse sintered and annealed by adding 4, 8, 12wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a liquid forming additives at low temperature($1800^{\circ}C$) for 4h. In this microstructures, the relative density is over 97% of the theoretical density and the porosity increased with increasing $Al_2O_3+Y_2O_3$ contents because of the increasing tendency of pore formation. But the fracture toughness showed the highest of $7.0MPa{\cdot}m^{1/2}$ for composites added with 12wt% $Al_2O_3+Y_2O_3$ additives at room temperature. The electrical resistivity showed the lowest of $1.59\times10^{-3}\Omega{\cdot}cm$ for composite added with 8wt% $Al_2O_3+Y_2O_3$ additives at room temperature and is all positive temperature coefficient resistance(PTCR} against temperature up to $700^{\circ}C$.

  • PDF

다층박판재료의 초고압 젯 정밀가공에 대한 실험적 연구 (Experimental Investigations into the Precision Cutting of High-pressured Jet for Thin Multi-layered Material)

  • 박강수;박연경;이정한;이채문;고정상;신보성
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.44-50
    • /
    • 2009
  • High-pressured jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics and composite materials because of some advantages such as heatless and non-contacting cutting. Similarly to the focused laser beam machining, it is well known as a type of high-density energy processes. High-pressured jetting is going to be developed not only to minimize the cutting line width but also to achieve the short cutting time as soon as possible. However, the interaction behavior between a work piece and high-velocity abrasive particles during the high-pressured jet cutting makes the impact mechanism even more complicated. Conventional high-pressured jetting is still difficult to apply to precision cutting of micro-scaled thin work piece such as thin metal sheets, thin ceramic substrates, thin glass plates and TMM (Thin multi-layered materials). In this paper, we proposed the advanced high-pressured jetting technology by introducing a new abrasives supplying method and investigated the optimal process conditions of the cutting pressure, the cutting velocity and SOD (Standoff distance).

Bentonite가 ABS 수지의 기계적 물성에 미치는 영향 (Effect of Bentonite on the Mechanical Properties of ABS Resin)

  • 돈윤승;심미자;김상욱
    • 공업화학
    • /
    • 제5권6호
    • /
    • pp.981-989
    • /
    • 1994
  • 국내에서 상당량 채취되는 자연산 bentonite(Ca계)와 이를 $Na_2CO_3$로 전환시켜 상업적으로 여러 용도에서 사용되는 Na계 bentonite를 신소재 개발을 위한 점토/유기물 복합체에 대한 고찰 측면에서 matrix 수지를 ABS로 하고 이의 충진재로의 특성을 살펴 보았다. 결과, bentonite의 함량이 증가하면 탄성율은 증가하지만 충격강도는 감소하였으며, 경도는 일정하였다. Na계 bentonite가 Ca계에 비하여 탄성율은 낮지만 충격강도에서 상대적 높은 값을 나타내었다. 저장탄성율(E')은 온도가 상승함에 따라 감소하나 tan ${\delta}$는 주파수가 증가할수록 고온으로 shift되었다.

  • PDF

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • ;송준우;탁병진;홍현선;홍순직
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

Gas Permeation of SiC Membrane Coated on Multilayer γ-Al2O3 with a Graded Structure for H2 Separation

  • Yoon, Mi-Young;Kim, Eun-Yi;Kim, Young-Hee;Whang, Chin-Myung
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.451-456
    • /
    • 2010
  • A promising candidate material for a $H_2$ permeable membrane is SiC due to its many unique properties. A hydrogen-selective SiC membrane was successfully fabricated on the outer surface of an intermediate multilayer $\gamma-Al_2O_3$ with a graded structure. The $\gamma-Al_2O_3$ multilayer was formed on top of a macroporous $\alpha-Al_2O_3$ support by consecutively dipping into a set of successive solutions containing boehmite sols of different particle sizes and then calcining. The boehmite sols were prepared from an aluminum isopropoxide precursor and heated to $80^{\circ}C$ with high speed stirring for 24 hrs to hydrolyze the precursor. Then the solutions were refluxed at $92^{\circ}C$ for 20 hrs to form a boehmite precipitate. The particle size of the boehmite sols was controlled according to various experimental parameters, such as acid types and acid concentrations. The topmost SiC layer was formed on top of the intermediate $\gamma-Al_2O_3$ by pyrolysis of a SiC precursor, polycarbosilane, in an Ar atmosphere. The resulting amorphous SiC-on-$Al_2O_3$ composite membrane pyrolyzed at $900^{\circ}C$ possessed a high $H_2$ permeability of $3.61\times10^{-7}$ $mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ and the $H_2/CO_2$ selectivity was much higher than the theoretical value of 4.69 in all permeation temperature ranges. Gas permeabilities through a SiC membrane are affected by Knudsen diffusion and a surface diffusion mechanism, which are based on the molecular weight of gas species and movement of adsorbed gas molecules on the surface of the pores.

알루미나가 포함된 복합산화물의 제조와 열물성 특성평가 (Fabrication and Thermophysical Properties of Al2O3-Based Multicomponent Composites by Sol-Gel Process)

  • 임샛별;유희정;홍태환;정미원
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.472-477
    • /
    • 2010
  • $Al_2O_3$ has received wide attention with established use as a catalyst and growing application in structural or functional ceramic materials. On the other hand, the boehmite (AlO(OH)) obtained by sol-gel process has exhibited a decrease in surface area during phase transformation due to a decline in surface active site at high temperature. In this work, $Al_2O_3$-CuO/ZnO (ACZ) and $Al_2O_3$-CuO/CeO (ACC) composite materials were synthesized with aluminum isopropoxide, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate or zinc (II) nitrate hexahydrate. Moreover, the Span 80 as the template block copolymer was added to the ACZ/ACC composition to make nano size particles and to keep increasing the surface area. The ACZ/ACC synthesized powders were characterized by Thermogravimetry-Differential Thermal analysis (TG/DTA), X-ray Diffractometer (XRD), Field-Emmision Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller (BET) surface analysis and thermal electrical conductivity (ZEM-2:M8/L). An enhancement of surface area with the addition to Span 80 surfactant was observed in the ACZ powders from 105 $m^2$/g to 142 $m^2$/g, and the ACC powders from 103 $m^2$/g to 140 $m^2$/g, respectively.

In vitro shear bond strength between fluorinated zirconia ceramic and resin cements

  • Tanis, Merve Cakirbay;Akay, Canan;Akcaboy, Turgut Cihan;Sen, Murat;Kavakli, Pinar Akkas;Sapmaz, Kadriye
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권3호
    • /
    • pp.205-210
    • /
    • 2018
  • PURPOSE. The purpose of this study was to evaluate the efficiency of a gas-phase fluorination method under different fluorination periods through using two resin cements. MATERIALS AND METHODS. 84 zirconia specimens in dimensions of $5mm{\times}5mm{\times}2mm$ were prepared and surface treated with $50{\mu}m$ aluminum oxide particles or gas phase fluorination for 2 min, 5 min, or 10 min. One specimen in each group was surface analyzed under scanning electron microscope. The remaining specimens were bonded to composite cylinders in dimensions of 2 mm diameter and 3 mm high with Panavia SA Plus or Variolink N. Then, the specimens were stored in $37^{\circ}C$ distilled water for 24 hours and shear bond strength test was applied at a speed of 1 mm/min. RESULTS. The highest shear bond strength values were observed in the samples fluorinated for 5 minutes and cemented with Panavia SA Plus. Variolink N did not elicit any statistical differences between surface treatments. Panavia SA Plus resin cement and Variolink N resin cements featured statistically significant difference in shear bond strength values only in the case of 5 minutes of fluorination treatment. CONCLUSION. According to the results of this study, application of 5 minutes of fluorination with 10-methacryloyloxydecyl dihydrogen phosphate monomer (MDP) containing Panavia SA Plus resin cement increased the resin bond strength of zirconia. Fluorination of the zirconia surface using conventional resin cement, Variolink N, did not lead to an increase in bond strength.

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiB_2$ Composite

  • Kim, Hyun-Jin;Lee, Soo-Whon;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • 제5권4호
    • /
    • pp.324-330
    • /
    • 1999
  • $Si_3N_4$-$TiB_2$ with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ additives was hot pressed in a flowing $N_2$ environment with varying $TiB_2$ content from 10 to 50 vol%. Variations of mechanical (hardness, fracture toughness, and flexual strength), and tribological properties as a function of $TiB_2$ content were investigated. As the content of $TiB_2$ increased, relative density decreased due to the chemical reaction of $TiB_2$in $N_2$ environment. The reduction of density causes mechanical properties to be degraded with an increase of $TiB_2$ in $Si_3N_4$. Tribological properties were dependent of microstructure as well as mechanical properties, however, they were degraded strongly by the chemical reaction of $Si_3N_4$-$TiB_2$ during hot pressing in $N_2$ environment. SEM and TEM observations, and X-ray diffraction analysis that the chemical reaction products at the interface are TiCN, Si, and $SiO_2$. Also, the comparison of XRD patterns of the $Si_3N_4$-40 vol% $TiB_2$ composites hot pressed at $1,750^{\circ}C$ for 1 hour between in $N_2$ and in Ar gas was made. The XRD peaks of Si and $SiO_2$ were not found in Ar, but still a weak peak of TiCN was presented.

  • PDF

ZnO 나노분말 및 고투명성 자외선 차단 분산 졸의 제조 (Preparation of ZnO Nano Powder and High-transparent UV Shielding Dispersion Sol)

  • 이헌동;김진모;손대희;이승호;박성수
    • 공업화학
    • /
    • 제24권4호
    • /
    • pp.391-395
    • /
    • 2013
  • 본 연구에서는 자외선 흡수 물질로 잘 알려진 zinc oxide (ZnO) 나노분말을 세 가지 합성조건에서 수열합성법으로 합성하였다. 또한, 분산성을 향상시키기 위하여 합성된 ZnO 나노분말의 표면을 다양한 실란계 계면활성제를 사용하여 표면 개질하였고, 표면개질된 ZnO 나노분말을 분산제로 72 h 동안 볼밀링하여 분산 졸 시료를 제조하였다. 30 nm 크기로 합성된 ZnO 나노분말을 3-chloropropyl trimethoxy silane로 표면개질하여 폴리우레탄계 분산제로 제조한 분산 졸 시료가 가장 높은 자외선 차단 특성 및 가시광 투과율을 가지면서 분산 안정성이 가장 우수하였다.