• Title/Summary/Keyword: composite carbody

Search Result 61, Processing Time 0.021 seconds

A Study on Material Selection of the Carbody Structure of Korean Tilting Train express(TTX) through the Verification of Design Requirements (설계요구조건 검증을 통한 한국형 고속 틸팅열차(TTX)의 차체 재료 선정에 관한 연구)

  • 신광복;구동회;한성호;박기진
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.77-84
    • /
    • 2004
  • In order to determine the most suitable material system for achieving the lightweight design while fulfilling the design requirements of carbody structures of Korean Tilting Train eXpress(TTX), aluminum carbody. composite carbody, and hybrid carbody combined with aluminum and composite structures were considered in the present study. The finite-element analysis was used to verify the design requirements or the TTX carbody structures with the material system considered in the design stages. The stresses in the carbody structures and deflections of underframe against static load cases were used as design criteria. The results show that the hybrid carbody structures are beneficial with regard to weight savings and structural integrity in comparison to aluminum and composite carbody structures.

A Study on Material Selection of the Carbody Structure of Korean Tilting Train eXpress(TTX) (한국형 고속 틸팅열차(TTX)의 차체 재질 선정 연구)

  • Shin, Kwang-Bok;Koo, Dong-Hoe
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.462-467
    • /
    • 2004
  • In order to determine the most suitable material system which can achieve the lightweight design and fulfill the design requirements of carbody structures of Korean Tilting Train eXpress (TTX), aluminum carbody, composite carbody, and hybrid carbody combined with aluminum and composite structures were considered in present study. The finite-element analysis was used to verity the design requirements of the TTX carbody structures with the material system being considered in the design stages. The stresses in the carbody structures and deflections of underframe against static load cases were checked as design criteria. The results show that the hybrid carbody structures are beneficial with regard to weight savings and structural integrity when compared to aluminum and composite carbody structures.

  • PDF

A Study on Fatigue Test Procedure of a Composite Train Carbody (복합재 철도차량 차체의 피로내구시험 철차에 대한 연구)

  • Kim, Jung-Seok;Han, Seong-Ho;Seo, Seung-Il;Jeong, Jong-Cheol;Cho, Sea-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.234-238
    • /
    • 2005
  • This paper explains the fatigue test procedure of a composite train carbody. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. In order to evaluate fatigue strength of the composite carbody, the carbody will be excited by two 50-ton capacity hydraulic actuators. The excitation frequency will be measured by natural frequency evaluation test under full weight condition. The test The fatigue test is to be conducted For $2{\times}10^6$cycles. During the fatigue test, the nondestructive tests using X-ray and liquid penetrant will be performed. From crack detection tests, the location and Fatigue crack progress will be investigated.

  • PDF

Analysis of the Composite Carbody Structures Using Submodeling Approach (서브모델링기법으로 이용한 복합재 차체 구조물의 상세해석)

  • Kim, Soo-Hyun;Kim, Chun-Gon;Kim, Jung-Seok;Jeong, Jong-Cheol;Cho, Sea-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.243-246
    • /
    • 2005
  • The weight reduction of carbody stl1lctures is of great concern in developing high speed tilting train for the normal operation of tilting system. The use of composite materials for the carbody structures has many advantages due to their excellent material propel1ies. In this paper, finite element analysis was conducted to verify the safety of the composite structures of Tilting Train eXpress(TTX). A train prototype with carbon/epoxy composite carbody was manufactured to perform static loading tests according to JIS E 7105. The loading tests were simulated by FE analysis to compare with the test results. To obtain more accurate and detailed result of stress distribution in local region of carbody, the submodeling approach was used. The submodeling analysis results showed the high levels of stress concentration occured on window frame part of TTX as the loading test results did.

  • PDF

The Manufacturing Process for Hybrid Composite Carbody Structures of Korean Tilting Train eXpress (TTX 하이브리드 복합재 차체 제작 공정)

  • Shin Kwang-Bok;Cho Se-Hyun;Lee Sang-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.212-215
    • /
    • 2004
  • The hybrid composite carbody structures were considered as the carbody system of Korean Tilting Train eXpress(TTX) to achieve the lightweight design. The TTX carbodies are composed of the carbody shell made of the sandwich composite structure and the undeframe made of the metal structure. The sandwich structures were used to minimize the weight of carbody, and the metal underframe was used to modify the design easily and to keep the strength of underframe by the installation of the electrical equipments. The sandwich carbody structures will be cured in an autoclave. In this paper, the manufacturing processes of the TTX carbody structures were introduced briefly.

  • PDF

Structural Characteristics of a Hybrid Composite Carbody of Korean Tilting Train by Weight Load (한국형 틸팅열차용 복합재 차체의 하중적재에 따른 구조적 특성고찰)

  • Kim Jung-Seok;Jeong Jong Cheol;Han Jeong-Woo;Lee Sang-Jin;Kim Seung-Cheol;Seo Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.251-256
    • /
    • 2006
  • This paper explains manufacturing process, analysis and experimental studies on a hybrid composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a aluminium honeycomb core and woven fabric carbon/epoxy faces. In order to evaluate deformational behavior of the composite carbody, the static load test under vertical load has been conducted. From the test, the vertical deflection an겨 cross sectional deformation of the carbody were analysed and measured. The maximum deflection along the side sill was 9.25mm in the experiment and 8.28mm in the analysis. The maximum cross sectional deformation was measured 5.42mm at carbody center in lateral direction and 4.06mm at roof center in vertical direction.

An Evaluation of Structural Strength by Testing the Carbody of Light Composite Material (경량 복합소재 차체의 시험에 의한 구조강도 평가)

  • Yoon S.C.;Jeon C.S.;Kim W.K.;Kim M.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.393-394
    • /
    • 2006
  • This study introduces the testing results of the composite carbody which is applied to tilting train. The composite carbody is made of aluminum honeycomb structure materials like a sandwich. The static load test was performed to evaluate the structural characteristic and stability of the composite carbody. Considering the vertical, compressive, twisting load and 3-point supporting type as a testing terms, the structural stability of a carbody was evaluated.

  • PDF

Analytical and Experimental Studies on the Natural Frequency of a Composite Train Carbody (복합재 철도차량 차체 고유진동수에 대한 해석 및 시험적 연구)

  • Jeong Jong-Cheol;Cho Sea-Hyun;Seo Seong-Il;Kim Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.473-480
    • /
    • 2006
  • This paper explains analytical and experimental studies to evaluate the natural frequency of a composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. From the finite element analysis, the 1st bending and 1st twisting natural frequency of the composite carbody were 11.67Hz and 14.4Hz, respectively. In order to verify the analytical results, the natural frequency measuring tests were performed. The measured 1st bending and twisting natural frequencies of the composite carbody were 10.25Hz and 11.0Hz, respectively. Both of these results satisfied the design requirement.

Evaluation of structural strength for Composite Carbody of Tilting Train (복합재 틸팅열차 차체 구조물의 구조강도 평가)

  • Jeong, Jong-Cheol;Lee, Sang-Jin;Cho, Sea-Hyun;Kim, Jung-Seok;Kim, Chun-Gon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.199-202
    • /
    • 2005
  • This study has performed the static loading tests for the composite train body of Korean tilting train. The structural tests based on the JIS E7105 standard were carried out in the test facility designed for the train carbody. The vertical, compressive and torsional loads were imposed on the underframe and the end structure of the carbody. the structural behavior of the carbody under the 3-point supporting and the natural frequency were evaluated as well. In addition, the test results were compared with the numerical one. From the tests. the structural strength of the hybrid composite carbody was assessed.

  • PDF

Analysis and Design of the Composite Carbody of Tilting Train (복합재 틸팅열차 차체 구조물의 해석 및 설계)

  • Kim Soo-Hyun;Kang Sang-Guk;Lee Sang-Eui;Kim Chun-Gon;Lee Sang-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.47-50
    • /
    • 2004
  • Weight reduction of the carbody is of great concern in developing high speed tilting train. Currently the composite materials are widely applied to the carbody structure due to their excellent material properties such as high specific strength and stiffness characteristics. In this paper, finite element analysis was conducted to design sandwich structures of composite carbody of the Korean Tilting Train eXpress(TTX). Several load tests on the carbody according to JIS E 7105, such as static vertical, compressive and torsional load tests was performed by finite element analysis, and the structural safety of composite carbody structure was verified.

  • PDF