• Title/Summary/Keyword: composite 3D printing

Search Result 68, Processing Time 0.022 seconds

Study on Peel Strength Measurement of 3D Printing Composite Fabric by Using FDM (FDM 방식을 활용한 3D 프린팅 복합직물의 박리강력 측정 연구)

  • Han, Yoojung;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.23 no.2
    • /
    • pp.77-88
    • /
    • 2019
  • One way of appling 3D printing to garments is through the combination of 3D polymer filaments in textile fabrics. it is essential to understand the interface between the polymer and the 3D composite fabric in order to enhance the adhesion strength between the polymers and the peeling strength between the fabric and the polymer. In this study, the adhesion of composite printed specimens using a combination of fabric and polymers for 3D printing was investigated, and also the change in adhesion was investigated after the composite fabric printed with polymers was subjected to constant pressure. Through this process, the aims to help develop and utilize 3D printing textures by providing basic data to enhance durability of 3D printing composite fabrics. The measure of the peeling strength of the composite fabric prepared by printing on a fabric using PLA, TPU, Nylon polymer was obtained as follows; TPU polymer for 3D printing showed significantly higher peel strength than polymers of composite fabric using PLA and Nylon polymer. In the case of TPU polymer, the adhesive was crosslinked because of the reaction between polyurethane and water on the surface of the fabric, thus increasing the adhesion. It could be observed that the adhesion between the polymer and the fiber is determined more by the mechanical effect rather than by its chemical composition. To achieve efficient bonding of the fibers, it is possible to modify the fiber surface mechanically and chemically, and consider the deposition process in terms of temperature, pressure and build density.

Evaluation of Mechanical Properties and Washability of 3D Printed lace/voil Composite Fabrics Manufactured by FDM 3D printing Technology (FDM 3D 프린팅 기술로 제작된 3D 프린팅 레이스/보일 복합직물의 역학적 특성 및 세탁성 평가)

  • Lee, Sunhee
    • Fashion & Textile Research Journal
    • /
    • v.20 no.3
    • /
    • pp.353-359
    • /
    • 2018
  • In this study, fused deposition modellig(FDM) 3D printing technology has been applied directly to polyester voil fabric to produce 3D printed lace/voil composite fabrics. A stereolithograpy(STL) file with a lace type 3D modelling under the various thickness were prepared and transformed into a g-code file using a g-code generator. The extrusion conditions for FDM 3D printing were controlled by 50mm/s of nozzle speed, $235^{\circ}C$ of nozzle temperature, $40^{\circ}C$ of heating bed temperature. 3D printed lace/voil composite fabriscs manufactured by 3D printing based on FDM using a thermoplactic polyurethane(TPU) filaments were obtained. To evaluate the mechanical properties and washability of the fabricated 3D printed lace/voil composite fabric, KES-FB system test, washing fastness test and dry cleaning resistance test were conducted. As 3D printing thickness increased, KOSHI, NUMERI, and FUKURAMI of 3D printed lace/voil composite fabric increased. From the results of the primary hand value test, 3D printed lace/voil composite fabrics were confirmed to be applicable to women's summer garments. As a result of the washability and dry cleaning resistance test of the 3D printed lace/voil composite fabrics, all samples were graded 4-5.

Development of 3D Printing Cement Based Composite Materials Applying for Exterior Finishing Material (건물 외장재 적용을 위한 3D 프린팅 시멘트 베이스 결합재 개발)

  • Shin, Hyeon-Uk;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.83-84
    • /
    • 2018
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base bonding material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility.

  • PDF

A Study on the Additive Manufacturing Process using Copper Wire-Nylon Composite Filaments (구리 와이어-나일론 복합소재 필라멘트를 이용한 적층제조 공정에 관한 연구)

  • Kim, Ye Jin;Kim, Seok;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2022
  • Fused deposition modeling (FDM), based on stacking a continuous filament of polymer or composite materials, is well matured and is thus widely used in additive manufacturing technology. To advance FDM-based 3D printing technology, the mechanical properties of additively manufactured composite materials must be improved. In this study, we proposed a novel FDM 3D printing process using metal wire-polymer composites, enabling enhanced mechanical properties. In addition, we developed a new type FDM filament of copper wire wrapped in nylon material for stable 3D printing without thermal damage during the printing process. After FDM printing of the copper wire-nylon composite filament, we conducted a tensile test to investigate the mechanical behavior of the printed composite materials. The experimental results confirmed that the tensile strength of the 3D-printed metal wire-polymer composites was higher than that of the conventional single polymer material. Thus, we expect that the FDM printing process developed in this study may be promising for high-load-bearing applications.

High Temperature Compressive Strength of Polymer Cement Composite Apply for 3D Printing Exterior Materials (시멘트 폴리머를 사용한 외장재용 결합재의 고온강도 특성)

  • Shin, Hyeon-Uk;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.116-117
    • /
    • 2019
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base composite material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed high temperature strength characteristics for application as an exterior materials of buildings and confirmed its possibility.

  • PDF

The effect of silica composite properties on DLP-stereolithography based 3D printing (실리카 복합소재의 물성에 따른 DLP 3D printing 적용 연구)

  • Lee, Jin-Wook;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.54-60
    • /
    • 2019
  • Recently, various composite materials for additive manufacturing are interested to expand the application field of 3D printing. 3D printing technique was mainly developed using polymer, and ceramic materials for 3D printing are still in the early stage of research due to the requirement of high solid content and post treatment process. In this study, silica particles with various diameters were surface treated with silane coupling agent, and synthesized as silica composite with photopolymer to apply DLP 3D printing process. DLP is an additive manufacturing technology, which has high accuracy and applicability of various composite materials. The rheological behavior of silica composite was analyzed with various solid contents. After DLP 3D printing was performed using silica composites, the printing accuracy of the 3D printed specimen was less than about 3 % to compare with digital data and he bending strength was 34.3 MPa at the solid content of 80 wt%.

3D Printable Composite Materials: A Review and Prospective (3D 프린터용 복합재료 연구 동향)

  • Oh, Eunyoung;Lee, Jinwoo;Suhr, Jonghwan
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.192-201
    • /
    • 2018
  • The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs and it is emerging as the next generation key of manufacturing. Due to the intrinsically limited mechanical/electrical properties and functionalities of printed pure polymer parts, there is a critical need to develop 3D printable polymer composites with high performance. This article gives a review on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the various fields.

Development of Conductive Polycaprolactone (PCL)-resin based on Reduced Graphene Oxide(rGO)/Polypyrrole (Ppy) composite for 3D-printing application (3D 프린팅 응용을 위한 환원그래핀/폴리피롤 복합체 기반의 전도성 폴리카프로락톤 레진의 개발)

  • Jeong, Hyeon Taek;Jung, Hwa Yong;Cho, Young Kwang;Kim, Chang Hyeon;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.935-939
    • /
    • 2018
  • 3D Printing technology is developing in various prototypes for medical treatment, food, fashion as well as machinery and equipment parts production. 3D printing technology is also able to fully be utilized to other industries in terms of developing its technology which has been reported in many field of areas. 3D printing technology is expected to be used in various applications related to $4^{th}$ industrial revolution such as finished products and parts even it is still carried out in the prototype model. In this study, we have investigated and developed conductive resin for 3d printing application based on reduced graphene oxide(rGO)/Polypyrrole(Ppy) composite and polycaprolactone(PCL) as a biodegradable polymer. The electrical properties and surface morphology of the conductive PCL resin based on therGO/Ppy composite were analyzed by 4point-probe and scanning electron microscope(SEM). The conductive PCL resin based on rGO/Ppy composite is expected to be applicable not only 3D printing, but also electronic materials in other industrial fields.

Synthesis and Characterization of Silica Composite for Digital Light Processing (광경화 3D 프린팅 공정을 위한 실리카 복합소재 합성 및 특성 분석)

  • Lee, Jin-Wook;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Three-dimensional(3D) printing is a process for producing complex-shaped 3D objects by repeatedly stacking thin layers according to digital information designed in 3D structures. 3D printing can be classified based on the method and material of additive manufacturing process. Among the various 3D printing methods, digital light processing is an additive manufacturing technique which can fabricate complex 3D structures with high accuracy. Recently, there have been many efforts to use ceramic material for an additive manufacturing process. Generally, ceramic material shows low processability due to its high hardness and strength. The introduction of additive manufacturing techniques into the fabrication of ceramics will improve the low processability and enable the fabrication of complex shapes and parts. In this study, we synthesize silica composite material that can be applied to digital light processing. The rheological and photopolymeric properties of the synthesized silica composite are investigated in detail. 3D objects are also successfully produced using the silica composite and digital light processing.

Development of Reinforced Bio-filament Composites Composed of Agricultural By-product for 3D Printing Technologies

  • Cheong, Kyu Min;Kim, Hye Been;Seo, Yu Ri;Lim, Ki Taek
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.108-108
    • /
    • 2017
  • In this study, biocomposite filaments with agricultural by-products can be used in extrusion-based 3D (Three-dimensional) printing. Extrusion-based 3D printing stands as a promising technique owing to its versatility. We hypothesized that bio-filament composite consisted of something derived from agricultural by-products could be used as 3D printing materials that could overcome the drawbacks of PCL (poly-caprolactone). Bio-filament mixed with PCL and agricultural by-products was defined as r-PCL in this study. In order to find it out the optimal mixing ratio of filaments, we had investigated PCL, r-PCL 10%, r-PCL 20%, r-PCL 50% separately. The morphological and chemical characteristics of the filaments were analyzed by FE-SEM (Field emission scanning electron microscope) and EDX (Energy-dispersive X-Ray spectroscopy), and the mechanical properties were evaluated by stress-strain curve, water contact angle, and cytotoxicity analysis. Results of this study have been shown as a promising way to produce eco-friendly bio-filaments composite for FDM (Fused deposition modeling) method based 3D printing technology. Thus, we could establish biomimetic scaffolds based on bio-printer filaments mixed with agricultural by-product.

  • PDF