• Title/Summary/Keyword: complexity metrics

Search Result 118, Processing Time 0.026 seconds

Time-Efficient Voltage Scheduling Algorithms for Embedded Real-Time Systems with Task Synchronization (태스크 동기화가 필요한 임베디드 실기간 시스템에서 시간-효율적인 전압 스케쥴링 알고리즘)

  • Lee, Jae-Dong;Kim, Jung-Jong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.30-37
    • /
    • 2010
  • Many embedded real - lime systems have adopted processors supported with dynamic voltage scal-ing(DVS) recently. Power is one of the important metrics for Optimization in the design and operation of embedded real-time systems. We can save considerable energy by using slowdown of processor sup-ported with DVS. In this paper, we improved the previous algorithm at a point of view of time complexity to calculate task slowdown factors for an efficient energy consumption in embedded real-time systems with task synchronization. We grasped the properties of the previous algorithm having $O(n^{2})$ time complexity through mathematical analysis and s simulation. Using its properties we proposed the improved algorithms with O(nlogn) and O(n) time complexity which have the same performance as the previous algorithm has.

A Program Test Path Generation and Complexity Metrics Based on Execution Path and Program Activity Characteristics (프로그램 동작특성과 실행경로 기반의 테스트 경로 생성과 복잡성 척도)

  • 고일석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.5A
    • /
    • pp.752-762
    • /
    • 2001
  • 소프트웨어의 유지보수 과정에서 효율적인 복잡성 척도와 테스트 경로의 생성은 중요한 문제이다. 대부분의 경우 테스트 경로의 생성과 복잡성 척도의 측정은 독립적인 기법이 필요하다. 본 논문에서는 테스트 경로의 생성과 복잡성 척도를 통합적으로 생성하고 있다. 제안한 기법은 PUT(Program Under Test)를 확장한 페트리네트 그래프(EPG)를 이용하여 모델링하고 이것의 통합적인 분석을 통하여 테스트 경로를 생성하며, 이 과정에서 생성된 실행경로의 제어구조별 평균 발생 빈도수를 이용하여 복잡성 척도 EV(G)를 구하였다. EV(G)는 실제 프로그램의 실행경로에 기반을 두었기 때문에 프로그램의 제어구조별 차이점 외에도 프로그램의 동작 특성을 복잡도에 잘 반영할 수 있다. 본 논문에서 제안한 통합 기법에 의한 테스트 경로 생성 기법과 복잡성 척도를 소프트웨어의 유지보수에 활용한다면 노력과 비용의 절감 및 소프트웨어의 질적 향상을 가져올 것이다.

  • PDF

Utility-based Resource Allocation with Bipartite Matching in OFDMA-based Wireless Systems

  • Zheng, Kan;Li, Wei;Liu, Fei;Xiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.8
    • /
    • pp.1913-1925
    • /
    • 2012
  • In order to efficiently utilize limited radio resources, resource allocation schemes in OFDMA-based wireless networks have gained intensive attention recently. Instead of improving the throughput performance, the utility is adopted as the metric for resource allocation, which provides reasonable methods to build up the relationship between user experience and various quality-of-service (QoS) metrics. After formulating the optimization problem by using a weighted bipartite graph, a modified bipartite matching method is proposed to find a suboptimal solution for the resource allocation problem in OFDMA-based wireless systems with feasible computational complexity. Finally, simulation results are presented to validate the effectiveness of the proposed method.

A study on the complexity metrics for system safety (시스템 안전성을 위한 복잡도 메트릭스 고찰)

  • Lee, Jean-Ho;Hwang, Dae-Yon;Sim, Jea-Hwan;Choi, Jin-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06b
    • /
    • pp.110-113
    • /
    • 2008
  • 시스템의 복잡도를 정의하고 측정하는 일은 보다 신뢰성있고 효율적인 시스템을 만들기 위한 초석이다. 복잡도가 증가함에 따라 복잡도에 영향을 받는 안전필수 시스템의 안전성을 정의하고 측정할 메트릭스가 필요성도 증가하고 있다. 본 논문에서는 임베디드 시스템의 복잡성과 안전성을 고찰하고, 안전성의 성질을 서술하는 복잡도 메트릭을 제안한다.

  • PDF

Performance evaluation of safety-critical systems of nuclear power plant systems

  • Kumar, Pramod;Singh, Lalit Kumar;Kumar, Chiranjeev
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.560-567
    • /
    • 2020
  • The complexity of safety critical systems of Nuclear Power Plant continues to increase rapidly due its transition from analog to digital systems. It has thus become progressively more imperative to model these systems prior to their implementation in order to meet the high performance, safety and reliability requirements. Timed Petri Nets (TPNs) have been widely used to model such systems for non-functional analysis. The paper presents a novel methodology for the analysis of the performance metrics using PN modeling. The paper uses the isomorphism property of the TPNs and the Markov chains for the performance analysis of the safety critical systems. The presented methodology has been validated on a Shutdown System of a Nuclear Power Plant.

Generalized Principal Ratio Combining of Space-Time Trellis Coded OFDM over Multi-Path Fading Channels (다중 경로 채널에서 공간-시간 트렐리스 부호화된 OFDM의 일반화된 준최적 검파)

  • Kim, Young-Ju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.352-357
    • /
    • 2008
  • We present a space-time trellis coded OFDM system in slow fading channels. Generalized principal ratio combining (GPRC) is also analyzed theoretically in frequency domain. The analysis shows that the decoding metric of GPRC includes the metrics of maximum likelihood(ML) and PRC. The computer simulations with M-PSK modulation are obtained in frequency flat and frequency selective fading channels. The decoding complexity and simulation running times are also evaluated among the decoding schemes.

An Empirical Validation of Complexity Metrics for Java Programs (Java 프로그램에 대한 복잡도 척도들의 실험적 검증)

  • Kim, Jae-Woong;Yu, Cheol-Jung;Jang, Ok-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.12
    • /
    • pp.1141-1154
    • /
    • 2000
  • 본 논문에서는 Java 프로그램의 복잡도를 측정하기 위해 필요한 인자들을 제안하였다. 이러한 인자들을 추출하기 위해 Java 프로그램을 분석하여 객체지향 설계 척도 값들을 계산하고 통계적 분석을 수행하였다. 그 결과 기존의 연구에서 발견되었던 클래스의 크기 인자 외에도 메소드 호출 빈도, 응집도, 자식 클래스의 수, 내부 클래스 및 상속 계층의 깊이가 주요 인자임이 파악되었다. 클래스의 크기 척도로 분류되었던 자식 클래스의 수는 다른 크기 척도들과 다른 성질을 가진다는 것을 발견하였다. 또한 프로그램의 크기가 커지고 결합도가 높아질수록 응집도가 떨어진다는 것을 입증하였다. 그리고 인자 분석을 바탕으로 인간의 인지 능력과 인자의 상관관계를 고려한 가중치를 적용하기 위해 인자별로 회귀분석을 수행하였다. 보다 적은 척도를 가지고 인자를 설명할 수 있는 회귀식을 도출하였다. 두 그룹에 대한 교차 검증 결과 회귀식이 높은 신뢰도를 가지는 것으로 나타났다. 따라서 본 논문에서 제안한 인자들을 이용하는 경우 Java 프로그램의 복잡도를 측정할 수 있는 새로운 척도로 사용할 수 있다.

  • PDF

Classification and Evaluation Method for Autonomy Levels of Unmanned Maritime Systems (무인해양시스템의 자율 수준 분류 및 평가 방안)

  • Kwon, Laeun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.404-414
    • /
    • 2016
  • Autonomy of unmanned systems is important because the unmanned system with high level of autonomy is able to perform desired tasks in unstructured environments without continuous human guidance. Evaluation of their autonomy is vital to realize the autonomous operation ability of unmanned system. Compared to the methods of evaluating the level of autonomy(LOA) for an unmanned ground vehicle(UGV) and unmanned aerial vehicle(UAV), the method of expressing the LOA of unmanned maritime system(UMS) is not established yet. Since UMS has a unique characteristics in terms of operational area, mission complexity and required technologies, compared to the UGV and UAV, it is required to establish for expressing the LOA for UMS. This paper reviews the current approaches to assess the LOA of unmanned system and proposes potential metrics for UMS in order to determine the autonomy levels of UMS.

Detection of Anomaly Lung Sound using Deep Temporal Feature Extraction (깊은 시계열 특성 추출을 이용한 폐 음성 이상 탐지)

  • Kim-Ngoc T. Le;Gyurin Byun;Hyunseung Choo
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.605-607
    • /
    • 2023
  • Recent research has highlighted the effectiveness of Deep Learning (DL) techniques in automating the detection of lung sound anomalies. However, the available lung sound datasets often suffer from limitations in both size and balance, prompting DL methods to employ data preprocessing such as augmentation and transfer learning techniques. These strategies, while valuable, contribute to the increased complexity of DL models and necessitate substantial training memory. In this study, we proposed a streamlined and lightweight DL method but effectively detects lung sound anomalies from small and imbalanced dataset. The utilization of 1D dilated convolutional neural networks enhances sensitivity to lung sound anomalies by efficiently capturing deep temporal features and small variations. We conducted a comprehensive evaluation of the ICBHI dataset and achieved a notable improvement over state-of-the-art results, increasing the average score of sensitivity and specificity metrics by 2.7%.

Software Quality Classification Model using Virtual Training Data (가상 훈련 데이터를 사용하는 소프트웨어 품질 분류 모델)

  • Hong, Euy-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.66-74
    • /
    • 2008
  • Criticality prediction models to identify most fault-prone modules in the system early in the software development process help in allocation of resources and foster software quality improvement. Many models for identifying fault-prone modules using design complexity metrics have been suggested, but most of them are training models that need training data set. Most organizations cannot use these models because very few organizations have their own training data. This paper builds a prediction model based on a well-known supervised learning model, error backpropagation neural net, using design metrics quantifying SDL system specifications. To solve the problem of other models, this model is trained by generated virtual training data set. Some simulation studies have been performed to investigate feasibility of this model, and the results show that suggested model can be an alternative for the organizations without real training data to predict their software qualities.