• Title/Summary/Keyword: complex viscosity

Search Result 241, Processing Time 0.032 seconds

Effects of the Degree of GO Reduction on PC-GO Chemical Reactions and Physical Properties (그래핀 옥사이드(GO)의 환원정도가 PC-GO 화학반응 및 물성에 미치는 영향)

  • Park, Ju Young;Shin, Jin Hwan;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.53-58
    • /
    • 2015
  • Polycarbonate (PC)/graphene oxide (GO) composites with 3 phr of GO were prepared by using a twin screw extruder at 240, 260, and $280^{\circ}C$ after mixing the solution with chloroform. It was confirmed by DSC and TGA that the glass transition temperature ($T_g$) of PC/GO composites were not changed and the thermal stability was the best in case of the extrusion temperature at $260^{\circ}C$. Thermo mechanical properties of PC/GO composites according to extrusion temperatures were measured by dynamic mechanical analysis (DMA). Storage moduli of PC/GO composites were higher than that of pure PC and there was no detectable changes at varying the extrusion temperature. Based on these results, the extrusion temperature of PC/GO composites was fixed at $260^{\circ}C$. The degree of the chemical reaction of PC/GO composites with respect to the GO reduction time was confirmed by the C-H stretching peak at $3000cm^{-1}$ and the degree of the chemical reaction was similar to that of GO when the reduction time was 1 h. A decrease in the complex viscosity as a function of the GO reduction time was detected by dynamic rheometer, which may be originated from the enhancement of GO dispersion by PC-GO reaction. The GO dispersion was confirmed by scanning electron microscope (SEM).

Synthesis of Multi-Walled Carbon Nanotube/Polystyrene (MWCNT/PS) Composites by Solution Process and Their Thermal Behavior (용액공정을 이용한 다중벽 탄소 나노튜브/폴리스티렌(MWCNT/PS) 복합체 합성 및 열적 거동)

  • Teng, Dayong;Shin, Young Hwan;Kwon, Younghwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.421-426
    • /
    • 2008
  • Multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites with various MWCNT contents were prepared by using a solution process with an aid of surfactant. Particularly, PS's with 3 different molecular weights (${\bar{M}}_n$ = 101500 g/mole for PS-1, ${\bar{M}}_n$ = 89900 g/mole for PS-2, and ${\bar{M}}_n$ = 85000 g/mole for PS-3) were used in this study. Thermal behavior of these composites was examined by using an oscillator rheometer at $210^{\circ}C$ and $180^{\circ}C$, of above and below the critical flow temperature ($T_{cf}{\sim}195^{\circ}C$) of PS matrix, respectively. The storage and loss modulus, and the complex viscosity of these composites increased with increasing MWCNT content at both temperatures. Largest increases in the frequency-dependent moduli and complex viscosity were observed between 2 wt% and 5 wt% of MWCNTs at $210^{\circ}C$ and $180^{\circ}C$. Only the composite at $210^{\circ}C$ showed the rheological phase transition from a viscous-dominant to an elastic-dominant behavior of the composites at a certain MWCNT content. The MWCNT content at the rheological phase transition of MWCNT/PS composites generally increased with decreasing molecular weight of PS, and was measured to be 3.5 wt% for MWCNT/PS-1, 3.2 wt% for MWCNT/PS-2, and 3.0 wt% for MWCNT/PS-3 composites.

Rheological behavior and ink-jet printing characteristics of aqueous ceramic complex ink (수계 세라믹 복합잉크의 유변학적 거동 및 잉크젯 프린팅 특성)

  • Kwon, Jong-Woo;Lee, Jong-Heun;Hwang, Kwang-Taek;Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.123-129
    • /
    • 2018
  • Ink-jet printing technology with ceramic ink of the four digital primary colors (cyan, magenta, yellow, and black; CMYK) can provide stable coloration even in the high-temperature firing process. Ceramic ink-jet printing can be widely applied in construction and ceramic industries due to the advantages of accurate and fast printing process of digital images for various products. Generally, organic solvent with proper viscosity and surface tension has been used in digital ink-jet printing process. However, the needs of ceramic ink without VOCs emission is increasing. In the present study, eco-friendly ceramic ink was synthesized by combining alumino boro-silicate glass frit and $CoAl_2O_4$ inorganic pigment based on an aqueous solvent that does not generate VOCs. The rheological properties and dispersion stability of aqueous ceramic ink were optimized. Jetting behavior and printing characteristics of the ceramic ink were also investigated in detail. As a result, the formulated aqueous ceramic complex ink showed a suitable jetting behavior without satellite drop by adjusting viscosity and surface tension. The ceramic ink can be printed on glass substrate with minimized spreading phenomena duo to high contact angle.

Study on the Non-isothermal Crystallization Kinetics of Branched Polypropylene (분지형 폴리프로필렌의 비등온결정화 거동 연구)

  • Yoon, Kyung-Hwa;Shin, Dong-Yup;Kim, Youn-Cheol
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.245-250
    • /
    • 2012
  • Branched polypropylenes (PP) with long chain branch were prepared by solid state reaction with three different branching agent of 0.3 wt% content. The chemical structures, non-isothermal crystallization behavior and complex viscosity of the branched PP were investigated by FTIR, DSC, optical microscope, and dynamic rheological measurement. The chemical structure of the branched PP was confirmed by the existence of =C-H stretching peak of the branching agent at 3100 $cm^{-1}$. There was no distinct change in melting temperature in case of PP-D-0-3 and PP-F-0-3, but PP-H-0-3 indicated a decrease in melting temperature. The decrease in melting temperature was interpreted by the fact that the degradation reaction of PP was more dominant than branched reaction, and confirmed by a decrease in complex viscosity. The non-isothermal crystallization behavior of the branched PP was analyzed using by Avrami equation. The Avrami exponent of PP was 3, and the values of the branched PP with DVB and FS were below 3. The activation energy of PP calculated by Kissinger method was 25 kJ/mol, and there were no big difference in activation energies of the branched PPs compared to PP.

Competitive Displacement of Methylcellulose from Oil-Water Interface by Various Emulsifiers (저분자량 유화제 첨가에 의한 계면 흡착 메칠셀룰로오스의 경쟁이탈 특성 연구)

  • Hong, Soon-Taek
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1271-1277
    • /
    • 2008
  • Competitive displacement of methylcellulose (MC) absorbed at the oil-water interface was investigated by interfacial composition, surface shear viscosity, or surface tension measurements. It was found that all emulsifiers could competitively displace the interfacial MC from the oil-water interface but their behaviors were different from each other. With Tween 20 added to MC emulsion (1 wt% MC, 10 wt% n-tetradecane, 20 mM bis-tris, pH 7), MC load was steadily decreased with increasing concentrations of the emulsifier, as confirmed by surface shear viscosity measurements; moreover, there was complete MC displacement from the emulsion droplet surface at high concentration (0.1 wt%). The oil-soluble Span 80 was found to show a synergism with MC at the interface, which resulted in higher MC load at relatively low emulsifier concentrations ($\leq$0.05 wt%). At a higher emulsifier concentration (0.1 wt%) limited MC displacement was observed. These results were well supported by surface shear viscosity measurements. With water-soluble SDS, MC load was decreased with increasing concentrations of the emulsifier. Unlike Tween 20, however, it was found that at high concentrations (> 0.1 wt%), there was still some MC remaining at the droplet surface. Surface tension measurements are suggestive of an interfacial complex between MC and SDS.

Rheological Properties of Bitumen for Reducing Negative Skin Friction (말뚝 부마찰력 저감용 역청재료의 유변학적 특성)

  • 박태순;윤수진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.191-200
    • /
    • 2003
  • This paper presents the rheological properties of bitumen for reducing negative skin friction. The bitumen has been widely used due to both the cost and construction effectiveness. Also, it is well known that the use of bitumen for reducing negative skin friction renders the best results among other available methods. Three different modified bitumens were used for the testing programs. The physical tests include the penetration, the softening point and penetration index. The rheological tests include phase angle, complex modulus, creep tests and flow tests. The tests were conducted at four different temperatures(15, 30, 45 and 6$0^{\circ}C$) in order to simulate the field condition. The test results were analyzed using the phase angle, G$^*$/sin $\delta$, creep compliance and shear viscosity. The result of tests showed that the phase angle increased and G$^*$/sin $\delta$ decreased with the increase of temperature. The creep compliance increased as the loading time increased. The difference of the creep compliance is detected as the time and temperature are varied, however, the difference of the shear viscosity is not significant among the samples tested in this study. The rheological properties of the bitumen also showed that the physical testing method and the temperature dependant testing method are somewhat limited to showing and expressing the full rheological properties of the modified bitumen. The introduction of the time and the temperature dependent testing method is necessary to find out the full rheological properties of the modified bitumen.

Application of the V2-F Turbulence Model for Flow Analysis of Turbomachinery (V2-F 난류 모델의 터보기계 유동 해석 적용)

  • Park, Jae Hyeon;Sohn, Dong Kyung;Kim, Chang Hyun;Baek, Je Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • Since a turbomachine has complex flow characteristics, which are caused by adverse pressure gradient and high speed motion, an elaborate turbulence model is needed to accurately predict the flow. Some turbulence models such as an algebraic or a two-equation eddy viscosity model have been used for in-house RANS-code, but it is difficult to obtain good result for several complex flows. In this study, Durbin's V2-F turbulence model, which has been known for better prediction for severe flow separation, is applied to T-Flow. It was validated for simple cases such as channel and compressor cascade, and its applicability to turbomachinery was shown by analyzing internal flow of a single rotor. As a result, the V2-F turbulence model shows better blade surface pressure distribution than the one-and-two equation turbulence model.

The Effects of Inclined Foil Shape on Flow Characteristics in Air Foil Thrust Bearing Using CFD (에어 포일 스러스트 베어링의 탑포일 경사면 형상이 유동특성에 미치는 영향에 대한 수치해석 연구)

  • Baek, GeonWoong;Joo, Won-Gu;Mun, Hyeong Wook;Hwang, Sunghyen;Jeong, Sung-Yun;Park, Jung-Koo
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.117-124
    • /
    • 2021
  • In this study, we perform a 3D CFD conjugate analysis according to the shape of the foil ramp of the air foil thrust bearing, analyze the flow characteristics inside the bearing, and compare the results corresponding to the two shapes. Air has a lower viscosity than lubricating oil. Therefore, the thrust runner of the bearing must rotate at high speed to support the load. The gap between thrust runner and foil is significantly smaller than that of the oil bearing. Hence, it is crucial to analyze the complex flow characteristics inside the bearing to predict the complex flow inside the bearing and performance of the bearing. In addition, flow characteristics may appear differently depending on the ramp shape of the bearing foil, which may affect bearing performance. In this study, we numerically analyze the main flow path of air flowing into the bearing and the secondary flow path used for cooling the bearing using the commercial CFD software ANSYS CFX and compare the flow characteristics for straight and curved foil ramp shapes. Notably, there is a difference in the speed of the flowing air according to the shape of the ramp, which affects the bearing performance.

Preparation by the double extraction process with preliminary neutron irradiation of yttria or calcia stabilised cubic zirconium dioxide microspheres

  • Brykala, Marcin;Walczak, Rafal;Wawszczak, Danuta;Kilim, Stanislaw;Rogowski, Marcin;Strugalska-Gola, Elzbieta;Olczak, Tadeusz;Smolinski, Tomasz;Szuta, Marcin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.188-198
    • /
    • 2021
  • A modern approach to nuclear energy involves reprocessing like transmutations of spent nuclear fuel products to reduce their radiotoxicity and time needed for their storage. For this purpose, they are immobilized in inert matrices made of zirconia and can be "burned" in fast neutron reactor or Accelerator Driven System. These matrices in spherical form can be obtained by sol-gel process. The paper presents a method of microspheres fabrication based on the combined Complex Sol-Gel Process and double extraction process consisting in the preparation of zirconium-ascorbate sol and simultaneous extraction of water and nitrates. The procedure allows obtaining gel microspheres with a diameter of 50 ㎛, which after heat treatment are processed into the final product. The synthesis of zirconia microspheres with Yttrium by internal gelation process is well known for over a decade now. However, the explanation and characterization of synthesis of such material by extraction of water process is rarely found. Parameters such as: pH, viscosity, shape, sphericity and crystal structure have been determined for synthesized products and semi-products. In addition, preliminary research consisting in irradiation of the obtained materials in fast and thermal neutron flux was carried out. The obtained results are presented and described in this work.

Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-Flow Turbomachinery (축류형 유체기계에서 익단 누설 유동 해석을 위한 난류 모델 성능 평가)

  • Lee, Gong-Hee;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1655-1666
    • /
    • 2003
  • It is experimentally well-known that high anisotropies of the turbulent flow field are dominant inside the tip leakage vortex, which is attributable to a substantial proportion of the total loss and constitutes one of the dominant mechanisms of the noise generation. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence models based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from the steady-state Reynolds averaged Navier-Stokes simulations based on the RNG k-$\varepsilon$ model and the Reynolds stress model (RSM) are compared with experimental data for two test cases: a linear compressor cascade and a forward-swept axial-flow fan. Through this comparative study of turbulence models, it is clearly shown that the RSM, which can express the production term and body-force term induced by system rotation without introducing any modeling, should be used to predict quantitatively the complex tip leakage flow, especially in the rotating environment.