• Title/Summary/Keyword: complex slopes

Search Result 83, Processing Time 0.023 seconds

A review of experimental and numerical studies on crack growth behaviour in rocks with pre-existing flaws

  • G. Sivakumar;V.B. Maji
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.333-366
    • /
    • 2023
  • Rock as a mass generally exhibits discontinuities, commonly witnessed in rock slopes and underground structures like tunnels, rock pillars etc. When these discontinuities experiences loading, a new crack emerges from them which later propagates to a macro scale level of failure. The failure pattern is often influenced by the nature of discontinuity, geometry and loading conditions. The study of crack growth in rocks, namely its initiation and propagation, plays an important role in defining the true strength of rock and corresponding failure patterns. Many researchers have considered the length of the discontinuity to be fully persistent on rock or rock-like specimens by both experimental and numerical methods. However, only during recent decades, there has been a substantial growth in research interest with non-persistent discontinuities where the crack growth and its propagation phenomenon were found to be much more complex than persistent ones. The non-persistence fractures surface is generally considered to be open and closed. Compared to open flaws, there is a difference in crack growth behaviour in closed or narrow flaws due to the effect of surface closure between them. The present paper reviews the literature that has contributed towards studying the crack growth behaviour and its failure characteristics on both open and narrow flaws subjected to uniaxial and biaxial compression loading conditions.

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: Correction Method for Daytime Hourly Air Temperature over Complex Terrain (기상청 동네예보의 영농활용도 증진을 위한 방안: 복잡지형의 낮 기온 상세화 기법)

  • Yun, Eun-jeong;Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.221-228
    • /
    • 2019
  • The effects of wind speed on the temperature change during day time could be insignificant in a region with a complex terrain. The objective of this study was to derive empirical relationship between solar radiation and hourly temperature under a windy condition for the period from sunrise to sunset in order to improve hourly air temperature at a site-specific scale. The deviation of the temperature measurements was analyzed along with the changes of the hourly sunlight at weather observation sites located on the east and west slopes under given wind speed. An empirical model where wind speed use used as an independent variable was obtained to quantify the solar effects on the temperature change (MJ/㎡). This model was verified estimating the hourly temperature during the daytime (0600-1900 h) at 25 weather observation sites located in the study area that has complex topography for the period from January to December 2018. The mean error (ME) and root mean square error (RMSE)of the estimated and measured values ranged from -0.98 to 0.67 ℃, and from 0.95 to 2.04 ℃, respectively. The daytime temperature at 1500 h were estimated using new and previous models. It was found that to the model proposed in the present study reduced the measurement errors of the hourly temperature in the afternoon in comparison with the previous model. For example, the ME and RMSE of the previous model were (ME -0.91 ℃ and 1.47 ℃, respectively. In contrast, the values of ME and RMSE were -0.45 ℃ and 1.22 ℃ for the new model, respectively. Our results suggested that the reliability of hourly temperature estimates at a specific site could be improved taking into account the effect of wind as well as solar radiation.

Enhancing the Stability of Slopes Located below Roads, Based on the Case of Collapse at the Buk-sil Site, Jeongseon Area, Gangwon Province (강원도 정선지역 북실지구 깎기비탈면 붕괴 사례를 통한 도로 하부 비탈면 안정성 확보에 관한 고찰)

  • Kim, Hong-Gyun;Bae, Sang-Woo;Kim, Seung-Hyun;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.83-94
    • /
    • 2012
  • Slopes are commonly formed both above and below roads located in mountainous terrain and along riversides. The Buk-sil site, a cut slope formed below the road, collapsed in October, 2010. A field investigation determined the causes of failure as improper drainage of valley water from the slope above the road and direct seepage of road-surface water. These factors may have accelerated the collapse via complex interaction between water and sub-surface structures such as bedding. Projection analysis of the site showed the possible involvement of plane, wedge, and toppling failure. Safety factors calculated by Limit Equilibrium Analysis for plane and wedge failure were below the standard for wet conditions. The wetness index, analyzed using topographic factors of the study area, was 9.0-10.5, which is high compared with the values calculated for nearby areas. This finding indicates a high concentration of water flow. We consider that water-flow control on the upper road is crucial for enhancing slope stability at the Buk-sil site.

Use of Beam Transmissometer as an Indirect Measure of Suspended Sediment Concentration in the Estuarine Environment: Application and Problems (강하구에서의 부유물질농도 결정을 위한 광전도측정기의 이용 및 문제점)

  • KIM Seok-Yun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.771-781
    • /
    • 1994
  • Monthly measurements made at 15 stations along the axis of the upper Neuse River estuary show a highly variable degree of correlation between concentration of suspended particulate material (SPM) and attenuation coefficient (c) of light as measured by transmissometer. Coefficients of determination along transect lines ranged from $0.12{\sim}0.93$ and calibration slopes ranged from $0.50{\sim}5.63$. When examined on a station-by-station basis, coefficients of determination ranged from $0.21{\sim}0.96$ and calibration slopes ranged from $1.04{\sim}4.94$. Surface calibrations made at individual stations over the full 13-month period were the most consistent of all observations and were considerably better than calibrations made using all of the stations on a given day. Organic content, which can dominate the suspended sediment load during some months, does not appear to explain the variations in reliability of the calibrations. However, an abundance of large aggregates with time-varying size and shape distributions may be partly responsible for variations in optical properties of the sediments, and thus may confound the relationship between SPM and c in the Neuse River estuary Time-varying calibrations to account for non-negligible changes in optical properties may not suffice in complex estuarine environments where the in situ particle dynamics are poorly understood. However, the best use of Beam Transmissometer will continue to be for applications such as detecting water-column events or for use in situations where wide error bars in establishing SPM concentrations are acceptable.

  • PDF

Case Study on the Causes for the Failure of Large Scale Rock Mass Slope Composed of Metasedimentary Rocks (변성퇴적암류로 구성된 대규모 암반사면의 붕괴원인 분석에 관한 사례 연구)

  • Park, Boo-Seong;Jo, Hyun;Cha, Seung-Hun;Lee, Ki-Hwan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.506-525
    • /
    • 2006
  • For the design of large scale rock slope which has complex formations and geological structures, generally, insufficiency of geotechnical investigations and laboratory tests are the main factors of slope failures doling construction. In such case, remedial measures to stabilize slope should be selected and applied through reliable investigations and analysis considering the geotechnical characteristics. The rock slope of this study, one of the largest cut slopes in Korea with a length of 520.0 m and maximum height of 122.0 m consists of metasedimentary rocks. And a case study on the causes of large-scale rock slope failure was carried out by analysis of landslides history and site investigations during construction. When the slope with the original design slope of 0.7: 1.0 (H:V) was partially constructed, the slope failure was occurred due to the factors such as poor conditions of rocks (weathered zone, coaly shale and fault shear zone), various discontinuities (joints, foliations and faults), severe rain storm and so on. The types of failures were rockfall, circular failure, wedge failure and the combination of these types. So, the design of slope was changed three times to ensure long-term slope stability. This paper is intended to be a useful reference for analyzing and estimating the stability of rock slopes whose site conditions are similar to those of this study site such as geological structures and geotechnical properties.

Morphological Characteristics of Ocean Core Complexes (OCC) in Central Indian Ridge Using High-Resolution Bathymetry and Backscatter Intensity Data from a Deep-Towed Vehicle (심해예인 고해상도 수심 자료와 후방산란 강도 자료를 이용한 인도양 중앙해령 내 Ocean Core Complex 구조의 지형적 특성 분석)

  • Hwang, Gyuha;Kim, Seung-Sep;Son, Seung Kyu;Kim, Jonguk;Ko, Youngtak
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.49-61
    • /
    • 2020
  • We analyzed the morphological characteristics of OCC (Ocean Core Complexes) in the middle part of the Central Indian Ridge (MCIR) using high-resolution geophysical data recorded on the Deep-Tow SideScan Sonar IMI-30 system. In terms of slope-gradient variations calculated from the high-resolution bathymetry data, the normal faults formed by seafloor spreading were associated generally with slopes > 30° and resulted in high backscatter intensities, which reflect more topographic effects than acoustic medium variation. However, the areas associated with gentle slopes < 10° tend to show the backscatter intensities reflecting the acoustic characteristic of the medium. We show that the detachment faults exposing the OCCs were initiated with high-angle normal faults (58°) exhibiting outward and inward dips of a breakaway zone. In order to examine the spatial distribution of OCC structures, we characterized the transition from magmatic-dominant seafloor with abyssal hills to tectonic-dominant seafloor with OCC using the down-slope direction variation. The slope direction of the seafloor generally tends to be perpendicular to the ridge azimuth in the magmatic-dominant zone, whereas it becomes parallel to the given ridge azimuth near the OCC structures. Therefore, this spatial change of seafloor slope directions indicates that the formation of OCC structures is causally associated with the tectonic-dominant spreading rather than magmatic extension. These results also suggest that the topographical characteristics of seafloor spreading and OCC structures can be distinguished using high-resolution geophysical data. Thus, we propose that the high-resolution bathymetry and backscatter intensity data can help select potential areas of exploitation of hydrothermal deposits in MCIR effectively.

The studies of the granite landforms in South Korea (한국의 화강암 지형에 대한 연구)

  • KANG, Tay-Gyoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.1-15
    • /
    • 2011
  • This work is to review the granite landforms studies by Korean geographers. It is verified that geomorphlogical characteristics of granite present landscapes characterized by 1) in case of mountains, are difficultly or irregularly weathered, so as to develop rocky forms such as domes, cliffs, and tors ; 2) in case of stream valley that is inter-massif lowland, low relief hills and flood plains with alluvium. All these facts owe to the difference of weathering mode granite properties. The granite hills and alluvial plains of southwestern coastal parts in Korean peninsula is low undulatory and large owing not only to the existence of highly weathered granitic regolith, but also to frequent flooding. Cultivated brownish field, orchard, meadow and forest are located at granite hills. On the other hand paddy rice field at granite alluvial plains. Korean peninsula have endured erodible geomorphlogical processes since Miocene when warping it up. Therefore many intermontane basins are located on the weathered granite areas which are surrounded by mountains composed of much less Precambrian gneiss complex. In fact, intermontane basin is mainly linear fault-line valley. The landforms of the intermontane basins are characterized by gentle piedmont slopes, alluvial fans, fluvial terraces and alluvial plains.

Estimation of hourly daytime air temperature on slope in complex terrain corrected by hourly solar radiation (복잡지형 경사면의 일사 영향을 반영한 매시 낮 기온 추정 방법)

  • Yun, Eun-jeong;Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.376-385
    • /
    • 2018
  • To estimate the hourly temperature distribution due to solar radiation during the day, on slope in complex terrain, an empirical formula was developed including the hourly deviation in the observed temperature following solar radiation deviation, at weather stations on the east-facing and west-facing slopes. The solar radiation effect was simulated using the empirical formula to estimate hourly temperature at 11 weather observation sites in mountainous agricultural areas, and the result was verified for the period from January 2015 to December 2017. When the estimated temperature was compared with the control, only considering temperature lapse rate, it was found that the tendency to underestimate the temperature from 9 am to 3 pm was reduced with the use of an empirical formula in the form of linear expression; consequently, the estimation error was reduced as well. However, for the time from 5 pm to 6 pm, the estimation error was smaller when a hyperbolic equation drawn from the deviation in solar radiation on the slope, which was calculated based on geometric conditions, was used instead of observed values. The reliability of estimating the daytime temperature at 3 pm was compared with existing estimation model proposed in other studies; the estimation error could be mitigated up to an ME (mean error) of $-0.28^{\circ}C$ and RMSE (root mean square error) of $1.29^{\circ}C$ compared to the estimation error in previous models (ME $-1.20^{\circ}C$, RMSE $2.01^{\circ}C$).

Determination of Verapamil with ISE based on Ion Exchanger (이온교환체 전극을 이용한 베라파밀 정량)

  • Lee, Eun-Yup;Kim, Dong-O;Chang, Seung-Hyun;Hur, Moon-Hye;Ahn, Moon-Kyu
    • YAKHAK HOEJI
    • /
    • v.40 no.2
    • /
    • pp.135-140
    • /
    • 1996
  • Ion-selective poly(vinyl chloride)(PVC) membrane electrodes for the determination of the calcium antagonist verapamil and its pharmaceutical preparations were described. Verapam il-superchrome garnet Y(SGY), lumogallion(LG), acid red 97(AR97), Dragendorff(DD) and Meyer reagent ion pairs were inverstigated as an electroactive compound for membrane electrode. Stable potentiometric response was obtained with azo dye at pH 6.5-4.0 and with DD, and Meyer reagent at pH 6.5-3.0. The best plasticizer was 49w/w% 2-nitrophenyl octyl ether for azo dye, and 65.3w/w% tri(n-butyl) citrate for DD and Meyer reagent. Potentiometric response slopes of optimized membrane electrodes based on SGY, LG, AR97, DD, and Meyer complex for verapamil were 52.49, 54.88, 50.81, 54.13 and 49.31 mV/dec., respectively. Lower limits of linear range were $1.0{\times}10^6M$ for SGY, LG, and AR97, while those for DD and Meyer reagent were $4{\times}10^{-6}M$. Detection limits for all these electrodes were $1{\times}10^{-5}M,\;4{\times}10^{-6}M,\;1.8{\times}10^{-6}M,\;8{\times}10^{-7}M,\;and\;1{\times}10^{-6}M$ with relative standard deviation of 2.56, 3.6, 3.96, 2.56, 3.20%, respectively.

  • PDF

Improvement of condition assessment criteria and embankment transformation of agricultural reservoirs after raising embankments

  • Lee, Dal-Won;Lee, Young-Hak
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.258-274
    • /
    • 2016
  • Recently, as fluctuations in annual precipitations continue to grow, the frequency of floods and droughts is rapidly increasing. Especially, since many reservoirs are reported as having less capacity and aging faster than large dams, the damages due to floods and droughts are estimated to become more severe. With this background for the present study, field investigation of reservoirs in Chungnam, Chungbuk, and Chonbuk regions was carried out for disaster prevention and the safety management of agricultural reservoirs. Furthermore, embankment transformations were compared and analyzed after the raising of embankments. Based on design methods for remodeling agricultural reservoirs and the results of embankment raising and the problems which occurred on crest, supplementation to the upstream and downstream slopes, control sector, and spillway should be implemented in the existing reservoir. In regard to this, the condition assessment score of compound member of reservoirs was performed, the Chungnam region score was in the 3.11-4.73 range. In addition, reservoirs in Chungbuk scored in the 4.00-4.49 range, and reservoirs in Chonbuk scored in the 3.90-4.60 range. Applying current precision safety inspection practices to small reservoirs requires economic expenses and time, for which assessment items are too varied and complex. Therefore, subdivided condition assessment items and criteria should be improved and streamlined by deleting, reducing, combining, and selecting only the riskiest factors. In the future, reservoirs should be periodically monitored and systemically managed and rational plans for maintenance and repairs should be used as reinforcement methods.