• Title/Summary/Keyword: complex sensor data

Search Result 202, Processing Time 0.026 seconds

Development of Fire Detection Algorithm using Intelligent context-aware sensor (상황인지 센서를 활용한 지능형 화재감지 알고리즘 설계 및 구현)

  • Kim, Hyeng-jun;Shin, Gyu-young;Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.93-96
    • /
    • 2015
  • In this paper, we introduce a fire detection system using context-aware sensor. In existing weather and based on vision sensor of fire detection system case, acquired image through sensor of camera is extracting features about fire range as processing to convert HSI(Hue, Saturation, Intensity) model HSI which is color space can have durability in illumination changes. However, in this case, until a fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. Additionally, the fire detection in complex situations as well as difficult to separate continuous boundary is set for the required area is difficult. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire it. In addition, it is possible to differential management to intensive fire detection is required zone dividing the state of fire.

  • PDF

Study on Modeling and Experiment of Optical Three Axis Tool-Origin Sensor for Applications of Micro Machine-Tools (초소형 공작기계 적용을 고려한 광학식 3 축 공구원점 센서 모델링 및 실험에 관한 연구)

  • Shin, Woo-Cheol;Lee, Hyeon-Hwa;Ro, Seung-Kook;Park, Jong-Kweon;Noh, Myoung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.68-73
    • /
    • 2009
  • One of the traditional optical methods to monitor a tool is a CCD sensor-based vision system which captures an aspect of the tool in real time. In the case using the CCD sensor, specific lens-modules are necessary to monitor the tool with higher resolution than its pixel size, and a microprocessor is required to attain desired data from captured images. Thus theses additional devices make the entire measurement system complex. Another method is to use a pair of an optical source and a detector per measuring axis. Since the method is based on the intensity modulation, the structure of the measurement system is simper than the CCD sensor-based vision system. However, in the case measuring the three dimensional position of the tool, it is difficult to apply to micro machine-tools because there may not be space to integrate three pairs of an optical source and a detector. In this paper, in order to develop a tool-origin measurement system which is employed in micro machine-tools, the improved method to measure a tool origin in x, y and z axes is introduced. The method is based on the intensity modulation and employs one pair of an optical source radiating divergent beams and a quadrant photodiode to detect a three dimensional position of the tool. This paper presents the measurement models of the proposed tool-origin sensor. The models were verified experimentally The verification results show that the proposed method is possible and the induced models are available for design.

Influence of Sensor Noise on the Localization Error in Multichannel SQUID Gradiometer System (다채널 스퀴드 미분계에서 센서 잡음이 위치추정 오차에 미치는 영향)

  • 김기웅;이용호;권혁찬;김진목;정용석;강찬석;김인선;박용기;이순걸
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.98-104
    • /
    • 2004
  • We analyzed a noise-sensitivity profile of a specific SQUID sensor system for the localization of brain activity. The location of a neuromagnetic current source is estimated from the recording of spatially distributed SQUID sensors. According to the specific arrangement of the sensors, each site in the source space has different sensitivity, that is, the difference in the lead field vectors. Conversely, channel noises on each sensor will give a different amount of the estimation error to each of the source sites. e.g., a distant source site from the sensor system has a small lead-field vector in magnitude and low sensitivity. However, when we solve the inverse problem from the recorded sensor data, we use the inverse of the lead-field vector that is rather large, which results in an overestimated noise power on the site. Especially, the spatial sensitivity profile of a gradiometer system measuring tangential fields is much more complex than a radial magnetometer system. This is one of the causes to make the solutions of inverse problems unstable on intervening of the sensor noise. In this study, in order to improve the localization accuracy, we calculated the noise-sensitivity profile of our 40-channel planar SQUID gradiometer system, and applied it as a normalization weight factor to the source localization using synthetic aperture magnetometry.

  • PDF

Highly Flexible Piezoelectric Tactile Sensor based on PZT/Epoxy Nanocomposite for Texture Recognition (텍스처 인지를 위한 PZT/Epoxy 나노 복합소재 기반 유연 압전 촉각센서)

  • Yulim Min;Yunjeong Kim;Jeongnam Kim;Saerom Seo;Hye Jin Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.88-94
    • /
    • 2023
  • Recently, piezoelectric tactile sensors have garnered considerable attention in the field of texture recognition owing to their high sensitivity and high-frequency detection capability. Despite their remarkable potential, improving their mechanical flexibility to attach to complex surfaces remains challenging. In this study, we present a flexible piezoelectric sensor that can be bent to an extremely small radius of up to 2.5 mm and still maintain good electrical performance. The proposed sensor was fabricated by controlling the thickness that induces internal stress under external deformation. The fabricated piezoelectric sensor exhibited a high sensitivity of 9.3 nA/kPa ranging from 0 to 10 kPa and a wide frequency range of up to 1 kHz. To demonstrate real-time texture recognition by rubbing the surface of an object with our sensor, nine sets of fabric plates were prepared to reflect their material properties and surface roughness. To extract features of the objects from the detected sensing data, we converted the analog dataset to short-term Fourier transform images. Subsequently, texture recognition was performed using a convolutional neural network with a classification accuracy of 97%.

Implementation of C-HMI based Real-time Control and Monitoring for Remote Wastewater Reclamation and Reusing System (C-HMI 기반의 원격지 중수도 설비 실시간 제어와 모니터링 구현)

  • Lee, Un-Seon;Park, Man-Gon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.717-722
    • /
    • 2013
  • The wastewater reclamation and reusing system has been rising as an alternative of water resource exhaustion that the whole world is experiencing. In order to be able to bring about improvement of the existing wastewater reclamation and reusing system, this research has developed of Conversion-Human Machine Interaction (C-HMI) based real-time control and monitoring system such as a sensor module and gate module, web monitoring system. This system was communication almost-error-free in various environment and situation. As a result, we have achieved our goal that has to doing work correctly as a sensor and gateway module that communication error is less than 0.2% throughout the embodied system and add that it can be easily controled and configured as an interface equipment to a complex sensor of water quality. According to this, the construction of a database capable of analyzing and assessing collection, storage and various elements of reliable water quality and flow rate data can be possible.

A Study on System Identification of Active Magnetic Bearing Rotor System Considering Sensor and Actuator Dynamics (센서와 작동기를 고려한 자기베어링 시스템의 식별에 관한 연구)

  • Kim, Chan-Jung;Ahn, Hyeong-Joon;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1458-1463
    • /
    • 2003
  • This paper presents an improved identification algorithm of active magnetic bearing rotor systems considering sensor and actuator dynamics. An AMB rotor system has both real and complex poles so that it is very hard to identify them together. In previous research, a linear transformation through a fictitious proportional feedback was used in order to shift the real poles close to the imaginary axis. However, the identification result highly depends on the fictitious feedback gain, and it is not easy to identify the additional dynamics including sensor and actuators at the same time. First, this paper discusses the necessity and a selection criterion of the fictitious feedback gain. An appropriate feedback gain minimizes dominant SVD(Singular Value Decomposition) error through maximizing rank deficiency. Second, more improvement in the identification is achieved through separating the common additional dynamics in all elements of frequency response matrix. The feasibility of the proposed identification algorithm is proved with two theoretical AMB rotor models. Finally, the proposed scheme is compared with previous identification methods using experimental data, and a great improvement in model quality and large amount of time saving can be achieved with the proposed method.

  • PDF

Design of Fire Emergency Evacuation System using Potential Field (퍼텐셜 필드를 이용한 화재 응급 대피 시스템 설계)

  • Lee, Min-Goo;Jung, Kyung-Kwon;Lee, Won-Seok
    • 전자공학회논문지 IE
    • /
    • v.48 no.3
    • /
    • pp.26-32
    • /
    • 2011
  • This paper proposed that the method be searched for optimal route of evacuation by algorithm using potential field in specific situation, fire. When robot met an obstacle to be indicated it to ignition point, the installed sensor could be detected the point in restricted area. In according as the data of a fire detection sensor and a sensor complex in a building, the information was transmitted to server which computed optimal route of evacuation by algorithm using potential field. After that, it was able to blow a siren and mark the safe-path with using wireless device such as smart-phone. It was confirmed that the proposed method in functional test, fire emergency evacuation algorithm using potential field, was advanced in circumstance of simulation.

Assessment of Backprojection-based FMCW-SAR Image Restoration by Multiple Implementation of Kalman Filter (Kalman Filter 복수 적용을 통한 Backprojection 기반 FMCW-SAR의 영상복원 품질평가)

  • Song, Juyoung;Kim, Duk-jin;Hwang, Ji-hwan;An, Sangho;Kim, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1349-1359
    • /
    • 2021
  • Acquisition of precise position and velocity information of GNSS-INS (Global Navigation Satellite System; Inertial Navigation System) sensors in obtaining SAR SLC (Single Look Complex) images from raw data using BPA (Backprojection Algorithm) was regarded decisive. Several studies on BPA were accompanied by Kalman Filter for sensor noise oppression, but often implemented once where insufficient information was given to determine whether the filtering was effectively applied. Multiple operation of Kalman Filter on GNSS-INS sensor was presented in order to assess the effective order of sensor noise calibration. FMCW (Frequency Modulated Continuous Wave)-SAR raw data was collected from twice airborne experiments whose GNSS-INS information was practically and repeatedly filtered via Kalman Filter. It was driven that the FMCW-SAR raw data with diverse path information could derive different order of Kalman Filter with optimum operation of BPA image restoration.

A Study on Development of the High Precision Cam Measurement Apparatus and Analysis of Cam Manufacturing Error (고 정밀 캠 측정 장치 개발 및 오차분석에 관한 연구)

  • Roh, Young-Hwa;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.112-119
    • /
    • 2009
  • Cam mechanisms are one of the most popular devices for generating irregular motion and are widely used in many automatic equipments, such as textile machinery, internal combustion engines and other automatic devices. In order to obtain the positive motion of follower by rotating cam, its shape should be correctly designed and manufactured. However, complex engineering tasks are required in a design and manufacturing of cams. And also, the manufacturing of general cam is demanded high costs. For the designing of cam, it must be decided that what kind of motion has to be transmitted to follower before selecting the curve of cam and designing profile of cam. However, even though the exact profile of cam is designed at the progress of design, if it doesn't have precision at the manufacturing progress, it's impossible to get expected result. We will develop cam simulation apparatus for measuring cam curve and get profile data before analyzing an error through comparison with design data of cam.

Design of C-EPS (Column type - Electric Power Steering) Simulator and Development of Control Algorithm (C-EPS (C-type Electric Power Steering) 시뮬레이터 설계 및 제어 알고리즘 개발)

  • Park, Myung-Wook;Moon, Hee-Chang;Kim, Jung-Ha;Crane III, Carl D.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.566-571
    • /
    • 2010
  • EPS (Electric Power Steering) is important device for improving vehicle's dynamics and static performances. This paper deals with simulator design for C-EPS (Colum type-EPS), development assist and returnability control algorithm. First, C-EPS system model was simply designed because EPS system is complex control system that has many unknown variables. These parameters were simplified through assumptions. Second, C-EPS simulator was designed for development of control algorithm. This simulator has SAS (Steering Angle Sensor), dual torque sensor, dual load cell for measuring rack force, dual linear actuator for generating tire force and Data Acquisition System. Using this simulator, control methods ware tested. Third, control algorithm was designed for torque assist and returnability. Assist torque map and returnability torque map were found by lots of simulation test. These torque maps were tuned for EPS actuator control. The simulation result was compared with non-EPS system result. In this research, the C-EPS simulator was designed for development of control algorithm about torque assistant and returnability. Using this simulator, control algorithm was improved.