• 제목/요약/키워드: complex representation

Search Result 383, Processing Time 0.035 seconds

Fast Scene Understanding in Urban Environments for an Autonomous Vehicle equipped with 2D Laser Scanners (무인 자동차의 2차원 레이저 거리 센서를 이용한 도시 환경에서의 빠른 주변 환경 인식 방법)

  • Ahn, Seung-Uk;Choe, Yun-Geun;Chung, Myung-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.92-100
    • /
    • 2012
  • A map of complex environment can be generated using a robot carrying sensors. However, representation of environments directly using the integration of sensor data tells only spatial existence. In order to execute high-level applications, robots need semantic knowledge of the environments. This research investigates the design of a system for recognizing objects in 3D point clouds of urban environments. The proposed system is decomposed into five steps: sequential LIDAR scan, point classification, ground detection and elimination, segmentation, and object classification. This method could classify the various objects in urban environment, such as cars, trees, buildings, posts, etc. The simple methods minimizing time-consuming process are developed to guarantee real-time performance and to perform data classification on-the-fly as data is being acquired. To evaluate performance of the proposed methods, computation time and recognition rate are analyzed. Experimental results demonstrate that the proposed algorithm has efficiency in fast understanding the semantic knowledge of a dynamic urban environment.

Face Recognition using LDA Mixture Model (LDA 혼합 모형을 이용한 얼굴 인식)

  • Kim Hyun-Chul;Kim Daijin;Bang Sung-Yang
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.8
    • /
    • pp.789-794
    • /
    • 2005
  • LDA (Linear Discriminant Analysis) provides the projection that discriminates the data well, and shows a very good performance for face recognition. However, since LDA provides only one transformation matrix over whole data, it is not sufficient to discriminate the complex data consisting of many classes like honan faces. To overcome this weakness, we propose a new face recognition method, called LDA mixture model, that the set of alf classes are partitioned into several clusters and we get a transformation matrix for each cluster. This detailed representation will improve the classification performance greatly. In the simulation of face recognition, LDA mixture model outperforms PCA, LDA, and PCA mixture model in terms of classification performance.

DNA coding-Based Fuzzy System Modeling for Chaotic Systems (DNA 코딩 기반 카오스 시스템의 퍼지 모델링)

  • Kim, Jang-Hyun;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.524-526
    • /
    • 1999
  • In the construction of successful fuzzy models and/or controllers for nonlinear systems, the identification of a good fuzzy inference system is an important yet difficult problem, which is traditionally accomplished by a time-consuming trial-and-error process. In this paper, we propose a systematic identification procedure for complex multi-input single-output nonlinear systems with DNA coding method. A DNA coding method is optimization algorithm based on biological DNA as conventional genetic algorithms(GAs) are. The strings in the DNA coding method are variable-length strings, while standard GAs work with a fixed-length coding scheme. the DNA coding method is well suited to learning because it allows a flexible representation of a fuzzy inference system. We also propose a new coding method fur applying the DNA coding method to the identification of fuzzy models. This coding scheme can effectively represent the zero-order Takagi-Sugeno(TS) fuzzy model. To acquire optimal TS fuzzy model with higher accuracy and economical size, we use the DNA coding method to optimize the parameters and the number of fuzzy inference system. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its application to a Duffing-forced oscillation system.

  • PDF

Reverse Engineering of XML Schema to Conceptual Model (개념적 모델로의 XML 스키마의 역변환 기법)

  • Jung, In-Hwan;Kim, Young-Ung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.211-216
    • /
    • 2017
  • XML is becoming a de facto standard for the representation and exchange of data, and XML itself is well structured to store and manage data, but it is difficult to understand the document structure at a glance due to its diverse and complex expressions. Thus, it is not appropriate to use it as a tool of conceptual model. In this paper, we propose a method to transform XML schema document structure into conceptual model. To do this, we describe CMXML as a conceptual modeling tool and present transformation rules and data structures for transforming an XML schema structure into CMXML diagram. In the transformation procedure, the XML schema document is input and the CMXML diagram is generated by applying the transformation rules.

Development of Analysis Technique for a High Voltage Circuit Breaker Using the CFD-CAD Integration (CFD-CAD 통합해석을 이용한 초고압 가스차단기 설계 기술 개발)

  • Lee, J.C.;Oh, I.S.;Min, K.S.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.523-528
    • /
    • 2001
  • There are many difficult problems in analyzing the flow characteristics in a high voltage circuit breaker such as shock wave and complex geometries, which may be either static or in relative motion. Although a variety of mesh generation techniques are now available, the generation of meshes around complicated, multicomponent geometries like a gas circuit breaker is still a tedious and difficult task for the computational fluid dynamics. This paper presents the computational method for analyzing the compressible flow fields in a high voltage gas circuit breaker using the Cartesian cut-cell method based on the CFD-CAD integration, which can achieve the accurate representation of the geometry designed by a CAD tools. The technique is frequently satisfied, and it will be almost universally so in the future, as the CFD-CAD traffic increases.

  • PDF

Rapid Prototyping of Polymer Microfluidic Devices Using CAD/CAM Tools for Laser Micromachining

  • Iovenitti, Pio G.;Mutapcic, Emir;Hume, Richard;Hayes, Jason P.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.183-192
    • /
    • 2006
  • A CAD/CAM system has been developed for rapid prototyping (RP) of microfluidic devices based on excimer laser micromachining. The system comprises of two complementary softwares. One, the CAM tool, creates part programs from CAD models. The other, the Simulator Tool, uses a part program to generate the laser tool path and the 2D and 3D graphical representation of the machined microstructure. The CAM tool's algorithms use the 3D geometry of a microstructure, defined as an STL file exported from a CAD system, and process parameters (laser fluence, pulse repetition frequency, number of shots per area, wall angle), to automatically generate Numerical Control (NC) part programs for the machine controller. The performance of the system has been verified and demonstrated by machining a particle transportation device. The CAM tool simplifies part programming and replaces the tedious trial-and-error approach to creating programs. The simulator tool accepts manual or computer generated part programs, and displays the tool path and the machined structure. This enables error checking and editing of the program before machining, and development of programs for complex microstructures. Combined, the tools provide a user-friendly CAD/CAM system environment for rapid prototyping of microfluidic devices.

Enhanced reasoning with multilevel flow modeling based on time-to-detect and time-to-effect concepts

  • Kim, Seung Geun;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.553-561
    • /
    • 2018
  • To easily understand and systematically express the behaviors of the industrial systems, various system modeling techniques have been developed. Particularly, the importance of system modeling has been greatly emphasized in recent years since modern industrial systems have become larger and more complex. Multilevel flow modeling (MFM) is one of the qualitative modeling techniques, applied for the representation and reasoning of target system characteristics and phenomena. MFM can be applied to industrial systems without additional domain-specific assumptions or detailed knowledge, and qualitative reasoning regarding event causes and consequences can be conducted with high speed and fidelity. However, current MFM techniques have a limitation, i.e., the dynamic features of a target system are not considered because time-related concepts are not involved. The applicability of MFM has been restricted since time-related information is essential for the modeling of dynamic systems. Specifically, the results from the reasoning processes include relatively less information because they did not utilize time-related data. In this article, the concepts of time-to-detect and time-to-effect were adopted from the system failure model to incorporate time-related issues into MFM, and a methodology for enhancing MFM-based reasoning with time-series data was suggested.

Detecting Complex 3D Human Motions with Body Model Low-Rank Representation for Real-Time Smart Activity Monitoring System

  • Jalal, Ahmad;Kamal, Shaharyar;Kim, Dong-Seong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1189-1204
    • /
    • 2018
  • Detecting and capturing 3D human structures from the intensity-based image sequences is an inherently arguable problem, which attracted attention of several researchers especially in real-time activity recognition (Real-AR). These Real-AR systems have been significantly enhanced by using depth intensity sensors that gives maximum information, in spite of the fact that conventional Real-AR systems are using RGB video sensors. This study proposed a depth-based routine-logging Real-AR system to identify the daily human activity routines and to make these surroundings an intelligent living space. Our real-time routine-logging Real-AR system is categorized into two categories. The data collection with the use of a depth camera, feature extraction based on joint information and training/recognition of each activity. In-addition, the recognition mechanism locates, and pinpoints the learned activities and induces routine-logs. The evaluation applied on the depth datasets (self-annotated and MSRAction3D datasets) demonstrated that proposed system can achieve better recognition rates and robust as compare to state-of-the-art methods. Our Real-AR should be feasibly accessible and permanently used in behavior monitoring applications, humanoid-robot systems and e-medical therapy systems.

The Effects of Mediated Computer Environments on Young Children's Representation of Replay (컴퓨터와 교사의 상호작용이 유아의 재연에 대한 표상력의 발달에 미치는 효과)

  • Park, Sun Hee
    • Korean Journal of Child Studies
    • /
    • v.15 no.2
    • /
    • pp.97-116
    • /
    • 1994
  • This study investigated the effect of young children's interaction with a teacher and computer environments on their development of representational competence cf replay, the children's ability to construct and reconstruct actions. A pretest-posttest design with one experimental group and one control group was used; quantitative analyses, including interview assessments and coded observations of children's work in the context of educational interventions were supplemented by qualitative analyses of this work. Thirty-nine children (2-5 years of age) were randomly assigned to either an experimental or control group. The educational intervention provided to the experimental group involved a sequence of twenty sessions incorporating a series of three computer environments. A teaching strategy, based on Vygotsky's Zone of Proximal Development (ZPD) and Sigel's distancing theory, was used to mediate children's interaction with these computer environments. Results indicated that children's representational competence kept developing and reached a higher stage and the educational intervention fostered the development of representational competence, with strong evidence of near transfer but no evidence of far transfer. These results suggest that representational competence is a teachable concept and that a complex mediating structure allows children to reconstruct their previous experiences and apply them to problem situations.

  • PDF

Network Analysis and Design of Aperture-Coupled Cavity-Fed Microstrip Patch Antenna (개구면 결합 공진기 급전 마이크로스트립 패치 안테나의 회로망 해석 및 설계)

  • Shin Jong Woo;Kim Jeong Phill
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.93-102
    • /
    • 2004
  • This paper presents a general theory for the analysis of an aperture-coupled cavity-fed microstrip patch antenna to develop a simple but accurate equivalent circuit model. The developed equivalent circuit consists of ideal transformers, admittance elements, and transmission lines. These circuit element values are computed by applying the complex power concept, the Fourier transform and series representation, and the spectral-domain immittance approach. The input impedance of the antenna is calculated and compared with the published data. Good agreements validate the simplicity and accuracy of the developed equivalent circuit model.