• Title/Summary/Keyword: complex permittivity

Search Result 149, Processing Time 0.017 seconds

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.

Optimization of Radar Absorbing Structures for Aircraft Wing Leading Edge (항공기 날개 앞전의 레이더흡수구조 최적화)

  • Jang, Byung-Wook;Park, Sun-Hwa;Lee, Won-Jun;Joo, Young-Sik;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.268-274
    • /
    • 2013
  • In this paper, objective functions are defined for optimization of radar absorbing structures (RAS) on the aircraft wing leading edge. RAS is regarded as a single layer structure made of dielectrics. Design variables are the real and imaginary parts of complex permittivity. Reflection coefficient(RC) and radar cross section(RCS) are used in the objective function respectively. Transmission line theory is employed to calculate the RC. The RCS is evaluated by using physical optics(PO) for a leading edge part model. Genetic algorithm(GA) is used to perform optimization procedures. The radar absorbing performance of designed RAS is assessed by the RCS of a wing which has RAS on the leading edge.

Development of the EM Wave Absorber for Preventing RFID Reader Interference in UHF band (UHF대역 RFID 리더 간섭방지용 전파흡수체 개발)

  • Park, Soo-Hoon;Choi, Chang-Mook;Song, Young-Man;Kim, Dong-Il;Jung, Ji-Won;Kim, Ki-Man
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.349-353
    • /
    • 2008
  • In this paper, the EM wave absorber was designed and fabricated for preventing Reader Interference of RFID communication system in UHF band We fabricated several samples in different composition ratios of Amorphous and CPE(Chlorinated Polyethylene). Absorption abilities were simulated in accordance with different thicknesses of the prepared absorbers and changed complex relative permittivity and permeability due to composition ratio. The mixing ratio of Amorphous and CPE was searched as 80 : 20 wt.% by experiments and simulation. Then the EM wave absorber was fabricated and tested using the simulated data. As a result, the developed EM wave absorber has a thickness of 4 mm and absorption ability was over 20 dB in frequency range of $860\;MHz{\sim}960\;MHz$. Therefore, it was confirmed that the developed absorber can be used for suppressing RFID reader interference in UHF band.

Study of the Effects of Fe94Si5Cr1-Rubber Absorbers with Sheet-Thickness (Fe94Si5Cr1을 이용한 Sheet 두께에 따른 전파흡수특성 연구)

  • Kim, Moon-Suk;Min, Eui-Hong;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.2
    • /
    • pp.62-66
    • /
    • 2009
  • The soft magnetic FeSiCr were processed the ball-mill for 30 hours and the shape of FeSiCr particles was changed from sphere to flake type, which was observed using scanning electron microscope. The complex permittivity and permeability spectra and reflection loss of FeSiCr-rubber composite was measured using Network Analyzer in order to investigate the relationship between the microwave absorption and the material constants. The matching frequency shifted toward lower frequency range with microwave absorber thickness, and microwave absorber with FeSiCr-rubber composite showed a maxium reflection loss of -8.3 dB at 1.86 GHz for a 1.3 mm thickness.

Modeling of the Power/Ground Plane Noise Including Dielectric Substrate Loss (유전체 손실을 고려한 전원부에서 유기되는 노이즈 모델링에 관한 연구)

  • Kim, Jong-Min;Nam, Ki-Hoon;Ha, Jung-Rae;Song, Ki-Jae;Na, Wan-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.170-178
    • /
    • 2010
  • In this paper, we propose the modeling of the power/ground plane which includes complex dielectric permittivity and loss tangent for the power/ground coupled noise. In order to estimate the effects of the dielectric substrate for the coupled noise, we used full-wave simulators, HFSS(High Frequency Structure Simulation) and MWS(MicroWave Studio). The simulated results for the commercial substrates are compared with the measured values. TLM(Transmission Line Method) was used for the calculation of power plane impedance using Debye model which depicts the dielectric loss of PCB. Finally, impedance from proposed circuit model showed very good coincidence to the measured data.

Design of Single Layer Radar Absorbing Structures(RAS) for Minimizing Radar Cross Section(RCS) Using Impedance Matching (임피던스정합을 이용한 레이더반사면적 최소화 단층형 전파흡수구조 설계)

  • Jang, Byung-Wook;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.118-124
    • /
    • 2015
  • The design of radar absorbing structures(RAS) is a discrete optimization problem and is usually processed by stochastic optimization methods. The calculation of radar cross section(RCS) should be decreased to improve the efficiency of designing RAS. In this paper, an efficient method using impedance matching is studied to design RAS for minimizing RCS. Input impedance of the minimal RCS for the specified wave incident conditions is obtained by interlocking physical optics(PO) and optimizations. Complex permittivity and thickness of RAS are designed to satisfy the calculated input impedance by a discrete optimization. The results reveal that the studied method attains the same results as stochastic optimization which have to conduct numerous RCS analysis. The efficiency of designing RAS can be enhanced by reducing the calculation of RCS.

An Applicable Method of an Electromagnetic Wave Absorber for SAR Reduction in the Human Head Exposed to Electromagnetic Fields Radiated by a Cellular Phone (휴대폰 전자파에 노출된 두부내 SAR 저감을 위한 전자파 흡수체 적용 방법 연구)

  • 이윤경;백락준;홍진옥;육재림;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.884-890
    • /
    • 2003
  • In order to reduce the specific absorption rate(SAR) in a human head exposed to electromagnetic fields radiated by a cellular phone, we have analyzed an electromagnetic wave absorber attached to the handset. A manufactured electromagnetic wave absorber was composed of Mn - Zn, which had complex relative permittivity of 7.30-j0.05 and permeability of 2.20-i1.55. The SAR value from the electromagnetic wave absorber attachment was calculated by using the nonuniform finite difference time domain(FDTD) algorithm and measured by phantom model at 835 MHz. The SAR reduction due to the electromagnetic wave absorber are about 18 % at 835 MHz. The V.S.W.R and radiation pattern of antenna are good agreement with the normal antenna. The gain reduction due to the electromagnetic wave absorber are only 0.3 dB at 835 MHz. But the sensitivity of cellular phone generally improves about 1 dB.

Electrical Properties of $C_{22}$-Quinolium(TCNQ) Langmuir-Blodgett Films Depending on the Frequency ($C_{22}$-Quinolium(TCNQ) LB 막의 주파수에 따른 전기적 특성)

  • Lee, S.K.;You, D.S.;Kim, T.W.;Kim, Y.K.;Kwon, Y.S.;Kang, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1289-1291
    • /
    • 1994
  • Dielectric properties of $C_{22}$-Quinolium(TCNQ) Langmuir-Blodgett (LB) films were studied as a function of frequency(10Hz-13MHz) and annealing temperature($20{\sim}240^{\circ}C$). A complex dielectric constant ${\epsilon}^*={\epsilon}'-i{\epsilon}"$, in general, shows the frequency dependence of orientational polarization in the measured frequency range. A dielectric permittivity ${\epsilon}'$ at 10Hz is around 8.2 and decreases very slowly as the frequency increases up to 1 MHz, and then suddenly drops above this frequency, while a dielectric loss factor ${\epsilon}"$ reaches a maximum near 1 MHz. Its annealing temperature dependence at 10Hz shows that ${\epsilon}'$ and ${\epsilon}"$ increase as the temperature increases upto $180^{\circ}C$, even though there is a little drop near $120{\sim}160^{\circ}C$. Both ${\epsilon}'$ and ${\epsilon}"$ drop quickly above $180^{\circ}C$. which may be thought of a destruction of the LB films. Another fact of the annealing temperature dependence of the dielectric constant is an occurrence of the new dielectric dispersion below 100Hz. This low frequency dispersion is getting clear above $80^{\circ}C$.

  • PDF

Analysis of Broad-Band Electromagnetic Wave Absorber for Single Polarized Wave by the Equivalent Material Method and the FDTD Method (등가재료정수법 및 FDTD법에 의한 단일편파용 광대역 전파흡수체의 해석)

  • 이수영;김동일;이종헌
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.3
    • /
    • pp.296-304
    • /
    • 1998
  • A design method of an electromagnetic wave absorber with ferrite fins in the second layer, which has very wide band frequency characteristics and is used for single-polarized wave absorption such as TV wave etc, has been designed. To examine the effectiveness of the Equivalent Material Constants Method$(EMCM)^{[1]}$ which is approximate method, the effective complex permittivity calculated by the Hashin-Strikman formulas and the EMCM are compared. Since, furthermore, the reflectivities by the EMCM in space and the FDTD method in an rectangular waveguide agreed well each other, it has been confirmed that the proposed electromagnetic wave absorber has excellent absorption characteristics in the frequency range of 30 MHz to 5830 MHz. Thus, it can be concluded that the EMCM is usefull to design and analyze the electro-magnetic wave absorber proposed here.

  • PDF

Development of EM Wave Absorber for Countermeasure against EM Wave Environment of 2.4 GHz Wireless LAN (2.4 GHz 무선LAN 전자파 환경대책용 전파흡수체 개발)

  • Yoon, Sang-Gil;Kim, Dae-Hun;Park, Soo-Hoon;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.193-197
    • /
    • 2009
  • In this paper, the EM wave absorber was designed and fabricated for improvement of Wireless LAN environment at 2.4 GHz. We fabricated several samples in different composition ratios of Sendust and CPE(Chlorinated Polyethylene). Absorption abilities were simulated in accordance with different thicknesses of the prepared absorbers and changed complex relative permittivity and permeability due to composition ratio. The mixing ratio of Sendust and CPE was searched as 80: 20 wt.% by experiments and simulation Then the EM wave absorber was fabricated and tested using the simulated data. As a result, the EM wave absorber was fabricated based on simulated data. Simulated and measured results agreed well. As a result, the developed EM wave absorber with thickness of 3.25 mm has absorption ability of 19 dB at 2.4 GHz.