• Title/Summary/Keyword: complex orography

Search Result 4, Processing Time 0.014 seconds

A Numerical Simulation Study of Orographic Effects for a Heavy Rainfall Event over Korea Using the WRF Model (WRF 모형을 이용한 한반도 집중 호우에 대한 지형 효과의 수치 모의 연구)

  • Lee, Ji-Woo;Hong, Song-You
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.319-332
    • /
    • 2006
  • This study examines the capability of the WRF (Weather Research and Forecasting) model in reproducing heavy rainfall that developed over the Korean peninsula on 26-27 June 2005. The model is configured with a triple nesting with the highest horizontal resolution at a 3-km grid, centered at Yang-dong, Gyeonggi-province, which recorded the rainfall amount of 376 mm. In addition to the control experiment employing realistic orography over Korea, two consequent sensitivity experiments with 1) no orography, and 2) no land over Korea were designed to investigate orographic effects on the development of heavy rainfall. The model was integrated for 48 hr, starting at 1200 UTC 25 June 2005. The overall features of the large-scale patterns including a cyclone associated with the heavy rainfall are reasonably reproduced by the control run. The spatial distribution of the simulated rainfall over Korea agreed fairly well with the observed. The amount of predicted maximum rainfall at the 3-km grid is 377 mm, which located about 50 km southeast from the observed point, Yang-Dong, indicating that the WRF model is capable of predicting heavy rainfall over Korea at the cloud resolving resolutions. Further, it was found that the complex orography over the Korean peninsula plays a role in enhancing the rainfall intensity by about 10%. The land-sea contrast over the peninsula was fund to be responsible for additional 10% increase of rainfall amount.

Wind-sand tunnel experiment on the windblown sand transport and sedimentation over a two-dimensional sinusoidal hill

  • Lorenzo Raffaele;Gertjan Glabeke;Jeroen van Beeck
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.75-90
    • /
    • 2023
  • Turbulent wind flow over hilly terrains has been extensively investigated in the scientific literature and main findings have been included in technical standards. In particular, turbulent wind flow over nominally two-dimensional hills is often adopted as a benchmark to investigate wind turbine siting, estimate wind loading, and dispersion of particles transported by the wind, such as atmospheric pollutants, wind-driven rain, windblown snow. Windblown sand transport affects human-built structures and natural ecosystems in sandy desert and coastal regions, such as transport infrastructures and coastal sand dunes. Windblown sand transport taking place around any kind of obstacle is rarely in equilibrium conditions. As a result, the modelling of windblown sand transport over complex orographies is fundamental, even if seldomly investigated. In this study, the authors present a wind-sand tunnel test campaign carried out on a nominally two-dimensional sinusoidal hill. A first test is carried out on a flat sand fetch without any obstacle to assess sand transport in open field conditions. Then, a second test is carried out on the hill model to assess the sand flux overcoming the hill and the morphodynamic evolution of the sand sedimenting over its upwind slope. Finally, obtained results are condensed into a dimensionless parameter describing its sedimentation capability and compared with values resulting from other nominally two-dimensional obstacles from the literature.

Sensitivity Analysis of Wind Resource Micrositing at the Antarctic King Sejong Station (남극 세종기지에서의 풍력자원 국소배치 민감도 분석)

  • Kim, Seok-Woo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • Sensitivity analysis of wind resource micrositing has been performed through the application case at the Antarctic King Sejong station with the most representative micrositing softwares: WAsP, WindSim and Meteodyn WT. The wind data obtained from two met-masts separated 625m were applied as a climatology input condition of micro-scale wind mapping. A tower shading effect on the met-mast installed 20m apart from the warehouse has been assessed by the CFD software Fluent and confirmed a negligible influence on wind speed measurement. Theoretically, micro-scale wind maps generated by the two met-data located within the same wind system and strongly correlated meteor-statistically should be identical if nothing influenced on wind prediction but orography. They, however, show discrepancies due to nonlinear effects induced by surrounding complex terrain. From the comparison of sensitivity analysis, Meteodyn WT employing 1-equation turbulence model showed 68% higher RMSE error of wind speed prediction than that of WindSim using the ${\kappa}-{\epsilon}$ turbulence model, while a linear-theoretical model WAsP showed 21% higher error. Consequently, the CFD model WindSim would predict wind field over complex terrain more reliable and less sensitive to climatology input data than other micrositing models. The auto-validation method proposed in this paper and the evaluation result of the micrositing softwares would be anticipated a good reference of wind resource assessments in complex terrain.

Variation of AEP to wind direction variability (풍향의 변동성에 따른 연간에너지 발전량의 변화)

  • Kim, Hyeon-Gi;Kim, Byeong-Min;Paek, In-Su;Yoo, Neung-Soo;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.1-8
    • /
    • 2011
  • In this study, we performed a sensitivity analysis to see how the true north error of a wind direction vane installed to a meteorological mast affects predictions of the annual-average wind speed and the annual energy production. For this study, two meteorological masts were installed with a distance of about 4km on the ridge in complex terrain and the wind speed and direction were measured for one year. Cross predictions of the wind speed and the AEP of a virtual wind turbine for two sites in complex terrain were performed by changing the wind direction from $-45^{\circ}$ to $45^{\circ}$with an interval of $5^{\circ}$. A commercial wind resource prediction program, WindPRO, was used for the study. It was found that the prediction errors in the AEP caused by the wind direction errors occurred up to more than 20% depending on the orography and the main wind direction at that site.