• 제목/요약/키워드: complex network

검색결과 2,246건 처리시간 0.028초

합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로 (Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image)

  • 서이안;신경식
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.1-19
    • /
    • 2018
  • 최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.

R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템 (An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis)

  • 이충석;이석주;최병구
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.79-96
    • /
    • 2012
  • 기술의 발전과 융합이 빠르게 이루어지고 있는 오늘날 유망기술을 어떻게 파악하여, 다양한 후보군들 중에서 최적의 R&D 대상을 어떻게 선정할 것인가에 대한 문제는 주요한 경영의사결정문제 중 하나로 부상하고 있다. 본 연구에서는 이러한 R&D 기술 선정 의사결정을 지원할 수 있는 새로운 지능형 의사결정지원시스템을 제안한다. 본 연구의 의사결정지원시스템은 크게 3가지 모듈로 구성되는데, 우선 첫 번째 모듈인 '기술가치 평가' 모듈에서는 기업이 관심을 갖고 있는 분야의 특허들을 분석하여 유망기술 파악에 요구되는 다양한 차원의 기술가치 평가지수 값들을 산출하는 작업이 이루어진다. 이를 통해, 현재 시점에서의 각 기술의 가치가 다양한 차원에서 평가가 이루어지고 나면, 두 번째 모듈인 '미래기술가치 예측' 모듈에서 이들의 시간 흐름에 따른 변화를 학습한 인공지능 모형을 토대로 각 후보기술들이 미래 시점에 어떤 가치지수값을 갖게 될 것인지 예측값을 산출하게 된다. 마지막 세 번째 모듈인 '최적 R&D 대상기술 선정 지원' 모듈에서는 앞서 두 번째 모듈에서 산출된 각 차원별 예상 가치지수값들을 적절히 가중합하여 기술의 종합적인 미래가치 예측값을 산출하여 의사결정자에게 제공하는 기능을 수행한다. 이를 통해 의사결정자가 자사에 적합한 최적의 R&D 대상기술을 선정할 수 있도록 하였다. 본 연구에서는 제안된 시스템의 적용 가능성을 검증하기 위해, 10년치 특허데이터에 인공신경망 기법을 적용하여 실제 기술가치 예측모형을 구축해 보고, 그 효과를 살펴본다.

국방 온톨로지를 통한 지능형 의사결정지원시스템 구축 및 활용 - 공군 군수상황관리체계 적용 사례 (Construction and Application of Intelligent Decision Support System through Defense Ontology - Application example of Air Force Logistics Situation Management System)

  • 조원기;김학진
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.77-97
    • /
    • 2019
  • 제 4차 산업혁명의 초연결 환경에서 발생하는 많은 양의 데이터는 제 4차 산업혁명을 기존의 생산 환경과 구분지어 주는 주요한 요소이다. 이러한 환경은 데이터를 필요로 하는 동시에 데이터를 생산하는 양면적인 특징을 가진다. 때문에 앞으로의 정보 시스템은 기존의 정보시스템보다 양적인 측면에서 더 많은 데이터를 처리해야 하며, 질적인 측면에서는 많은 데이터 중 사용자의 목적에 부합하는 목표 데이터만을 추출하는 능력이 요구된다. 작은 규모의 정보 시스템에서는 사람이 그 시스템을 정확히 이해하고 필요한 정보를 획득하는 것이 가능하지만, 시스템에 대해 정확한 이해가 어려워진 다양하고 복잡한 시스템에서는 원하는 정보를 획득하는 것이 점점 더 어려워진다. 이러한 문제는 데이터를 사람뿐 아니라 컴퓨터가 이해할 수 있는 온톨로지로 표현하여 다양한 정보처리가 가능하도록 하는 시맨틱 웹(Semantic Web) 구축이 해결책이 될 수 있다. 군에서도 현재 대부분의 업무가 정보 시스템을 통해 이루어지고 있는데, 정보의 입력이나 가공 등 단순처리 중심으로 구축된 기존 시스템이 점점 더 많은 양의 데이터를 포함하게 되면서 시스템을 쉽게 활용하기 위한 노력이 필요한 상황이다. 본 연구에서는 온톨로지를 통한 지능형 의사결정지원시스템의 예로 온톨로지 기반 군수상황관리체계를 제안하고자 한다. 온톨로지 기반 군수상황관리체계는 기존의 군수정보체계의 복잡한 정보를 직관적으로 보여주기 위해 구축된 군수상황관리체계를 온톨로지를 통해 구축하였으며, 성과기반군수지원 계약관리, 부품사전 등의 유용한 기능을 추가 식별하여 온톨로지에 포함하였다. 또한 구축된 온톨로지가 의사결정지원에 활용할 수 있는지를 확인하기 위해 시맨틱 웹 기술을 통해 기본적인 질의응답은 물론 추론 및 함수를 통한 분석기능을 구현하였다.

결핵 환자의 치료경과 중 혈청 내 Cytokine 분비와 변화 (Circulating Cytokine Levels and Changes During the Treatment in Patients with Active Tuberculosis in Korea)

  • 류연주;김윤정;권정미;나윤주;정유진;서주영;천선희
    • Tuberculosis and Respiratory Diseases
    • /
    • 제55권2호
    • /
    • pp.140-153
    • /
    • 2003
  • 연구배경 : 결핵균 항원으로 세포 매개성 면역반응이 활성화되면 여러 종류의 cytokine이 분비되고 각기 다른 cytokine과 network system으로 작용하여 여러 병태생리적인 과정을 조절한다. 결핵 환자에서 염증반응, 조직파괴 및 질환의 중증도는 proinflammatory cytokine과 suppressive cytokine의 균형과 조합에 의하여 결정되며, 결핵 진행의 제한과 악화에 중요한 역할을 할 것으로 생각되고 있다. 따라서 결핵의 이환과정에서 cytokine의 분비 및 변화와 역할을 파악하는 것이 질환의 병태생리를 이해하는데 크게 도움이 될 수 있다. 대상 및 방법 : 활동성 폐결핵 83명, 기관지 결핵 10명의 치료전과 정상 대조군 20명에서 말초혈액을 채취하여 혈청을 분리하여 $-70^{\circ}C$에 보관하였고, sandwich ELISA 방법을 이용하여 혈청 IL-$1{\beta}$, IL-2, IL-4, IL-6, IL-10, IL-12(p40), TNF-${\alpha}$, IFN-${\gamma}$, TGF-${\beta}$를 측정하였다. 폐결핵 환자 83명을 ATS guideline에 따라 중증도를 분류하였고, 추적관찰 중 탈락자를 제외한 45명에서 초치료 2개월과 6개월 후 각각 혈청 sIL-$1{\beta}$, IL-2, IL-4, IL-6, IL-10, IL-12(p40), TNF-${\alpha}$, IFN-${\gamma}$, TGF-${\beta}$를 재측정하였다. 결 과 : 1) IL-$1{\beta}$, TNF-${\alpha}$, IFN-${\gamma}$는 폐결핵 환자에서 대조군에 비하여 증가된 경향을 보였고(p>0.05), IL-6는 폐결핵군에서 통계적으로 유의하게 증가되었다(p<0.05). TGF-${\beta}$는 폐결핵과 기관지 결핵환자에서의 분비가 대조군에 비하여 감소된 경향을 보였으며(p>0.05), IL-2, IL-12(p40), IL-4, IL-10은 대조군과 폐결핵 환자에서 별다른 차이를 보이지 않았다. 2) 기관지 결핵 환자에서 IL-6, TNF-${\alpha}$는 대조군에 비해 증가되고 TGF-${\beta}$는 감소된 경향을 보였다(p>0.05). 폐결핵에 비해 IL-12(p40)의 분비는 증가된 경향을 보였다. 3) 결핵의 중증도가 심할수록 IFN-${\gamma}$와 IL-6가 유의하게 증가하였고(P<0.05), 특히 중증군에서 현저하였다. 4) 폐결핵 환자에서 치료전 측정한 IL-$1{\beta}$, IL-6, TNF-${\alpha}$ 간 및 IL-2, IL-4, IL-12 간에는 강한 양의 상관관계를 보였다(p<0.01). 5) 폐결핵 환자 45명에서 측정한 IL-6와 IFN-${\gamma}$는 치료후 2개월과 6개월에 각각 통계적으로 유의하게 감소되었다(p<0.05). 결 론 : 이상의 결과로 결핵의 병태생리에 있어서 여러 cytokine간의 균형과 조합의 변화가 숙주의 염증, 조직파괴 및 결핵의 중증도와 관련되어 있을 것으로 생각되지만 결핵의 형태나 면역반응 정도에 따른 다양성을 보여서 결과의 해석과 cytokine 측정의 임상적 이용에 대한 연구가 더욱 필요할 것으로 사료된다.

텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로 (A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github)

  • 정지선;김동성;이홍주;김종우
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.1-19
    • /
    • 2019
  • 제4차 산업혁명을 이끄는 주요 원동력 중 하나인 인공지능 기술은 이미지와 음성 인식 등 여러 분야에서 사람과 유사하거나 더 뛰어난 능력을 보이며, 사회 전반에 미치게 될 다양한 영향력으로 인하여 높은 주목을 받고 있다. 특히, 인공지능 기술은 의료, 금융, 제조, 서비스, 교육 등 광범위한 분야에서 활용이 가능하기 때문에, 현재의 기술 동향을 파악하고 발전 방향을 분석하기 위한 노력들 또한 활발히 이루어지고 있다. 한편, 이러한 인공지능 기술의 급속한 발전 배경에는 학습, 추론, 인식 등의 복잡한 인공지능 알고리즘을 개발할 수 있는 주요 플랫폼들이 오픈 소스로 공개되면서, 이를 활용한 기술과 서비스들의 개발이 비약적으로 증가하고 있는 것이 주요 요인 중 하나로 확인된다. 또한, 주요 글로벌 기업들이 개발한 자연어 인식, 음성 인식, 이미지 인식 기능 등의 인공지능 소프트웨어들이 오픈 소스 소프트웨어(OSS: Open Sources Software)로 무료로 공개되면서 기술확산에 크게 기여하고 있다. 이에 따라, 본 연구에서는 온라인상에서 다수의 협업을 통하여 개발이 이루어지고 있는 인공지능과 관련된 주요 오픈 소스 소프트웨어 프로젝트들을 분석하여, 인공지능 기술 개발 현황에 대한 보다 실질적인 동향을 파악하고자 한다. 이를 위하여 깃허브(Github) 상에서 2000년부터 2018년 7월까지 생성된 인공지능과 관련된 주요 프로젝트들의 목록을 검색 및 수집하였으며, 수집 된 프로젝트들의 특징과 기술 분야를 의미하는 토픽 정보들을 대상으로 텍스트 마이닝 기법을 적용하여 주요 기술들의 개발 동향을 연도별로 상세하게 확인하였다. 분석 결과, 인공지능과 관련된 오픈 소스 소프트웨어들은 2016년을 기준으로 급격하게 증가하는 추세이며, 토픽들의 관계 분석을 통하여 주요 기술 동향이 '알고리즘', '프로그래밍 언어', '응용분야', '개발 도구'의 범주로 구분하는 것이 가능함을 확인하였다. 이러한 분석 결과를 바탕으로, 향후 다양한 분야에서의 활용을 위해 개발되고 있는 인공지능 관련 기술들을 보다 상세하게 구분하여 확인하는 것이 가능할 것이며, 효과적인 발전 방향 모색과 변화 추이 분석에 활용이 가능할 것이다.

기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구 (A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm)

  • 신휴성;김동규;임민진;이규범;오영섭
    • 한국터널지하공간학회 논문집
    • /
    • 제19권1호
    • /
    • pp.95-107
    • /
    • 2017
  • 본 논문에서는 제도적으로 운영 중인 터널내 CCTV들로부터 실시간으로 들어오는 영상들을 최신 딥러닝 알고리즘을 이용, 학습시켜 다양한 조건의 터널환경에서 돌발 상황을 감지하고 그 돌발 상황의 종류들을 분류해 내는 시스템 개발을 위한 사전검토 연구를 수행하였다. 사전검토 연구를 위해, 2개의 도로현장의 교통류 CCTV영상 일부를 이용하여 가용한 전통적인 영상처리기법으로 영상내부로 집입하는 차량을 감지하고, 이동경로를 추적하여 일정 시간간격의 이동 차량의 좌표와 시간정보를 추출하고 학습자료를 구성하였다. 각 차량의 이동정보는 차선변경, 정차 등 6가지의 이벤트 정보와 연계된다. 차량 이동정보와 이벤트로 구성된 학습자료는 레질리언스(resilience) 기계학습 알고리즘을 이용하여 학습하였다. 2개의 은닉층을 설정하고, 각 은닉층의 노드수에 대한 9개의 은닉구조 모델을 설정하여 매개변수 연구를 수행하였다. 본 사전검토의 경우에는 첫 번째, 두 번째 은닉층 노드수가 각각 300개와 150개로 설정된 모델이 합리적으로 가장 추론정확도가 높은 것으로 평가되었다. 이로부터 일반화되기 매우 힘든 복잡한 교통류 상황을 기계학습을 이용하여 어떠한 사전 규칙설정 없이도 교통류의 특징들을 정확히 자동으로 감지할 수 있는 가능성을 보였다. 본 시스템은 시스템의 운용을 통해 지속적으로 교통류 영상과 이벤트 정보가 늘어난다면, 자동으로 그 시스템의 인지능력과 정확도가 자동으로 향상되는 효과도 기대할 수 있다.

교통사고 데이터의 마이닝을 위한 연관규칙 학습기법과 서브그룹 발견기법의 비교 (Comparison of Association Rule Learning and Subgroup Discovery for Mining Traffic Accident Data)

  • 김정민;류광렬
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.1-16
    • /
    • 2015
  • 교통사고의 원인을 규명하고 미래의 사고를 방지하기 위한 노력의 일환으로 데이터 마이닝 기법을 이용한 교통 데이터 분석의 연구가 이루어지고 있다. 하지만 기존의 교통 데이터를 이용한 마이닝 연구들은 학습된 결과를 사람이 이해하기 어려워 분석에 많은 노력이 필요하다는 문제가 있었다. 본 논문에서는 많은 속성들로 표현된 교통사고 데이터로부터 유용한 패턴을 발견하기 위해 규칙 학습 기반의 데이터 마이닝 기법인 연관규칙 학습기법과 서브그룹 발견기법을 적용하였다. 연관규칙 학습기법은 비지도 학습 기법의 하나로 데이터 내에서 동시에 많이 등장하는 아이템(item)들을 찾아 규칙의 형태로 가공해 주며, 서브그룹 발견기법은 사용자가 지정한 대상 속성이 결론부에 나타나는 규칙을 학습하는 지도학습 기반 기법으로 일반성과 흥미도가 높은 규칙을 학습한다. 규칙 학습 시 사용자의 의도를 반영하기 위해서는 하나 이상의 관심 속성들을 조합한 합성 속성을 만들어 규칙을 학습할 수 있다. 규칙이 도출되고 나면 후처리 과정을 통해 중복된 규칙을 제거하고 유사한 규칙을 일반화하여 규칙들을 더 단순하고 이해하기 쉬운 형태로 가공한다. 교통사고 데이터를 대상으로 두 기법을 적용한 결과 대상 속성을 지정하지 않고 연관규칙 학습기법을 적용하는 경우 사용자가 쉽게 알기 어려운 속성 사이의 숨겨진 관계를 발견할 수 있었으며, 대상 속성을 지정하여 연관규칙 학습기법과 서브그룹 발견기법을 적용하는 경우 파라미터 조정에 많은 노력을 기울여야 하는 연관규칙 학습기법에 비해 서브그룹 발견기법이 흥미로운 규칙들을 더 쉽게 찾을 수 있음을 확인하였다.

상아질 손상 후 흰쥐 대구치 치수의 calcitonin gene-related peptide(CGRP) 함유 신경섬유 분포에 관한 연구 (A STUDY ON THE DISTRIBUTION OF CALCITONIN GENE-RELATED PEPTIDE CONTAINING NERVE FIBERS IN RAT PULP FOLLOWING DENTINAL INJURY)

  • 문주훈;박상진;민병순;최호영;최기운
    • Restorative Dentistry and Endodontics
    • /
    • 제24권1호
    • /
    • pp.100-115
    • /
    • 1999
  • The purpose of this study was to investigate the distribution of calcitonin gene-related peptide containing nerve fibers in rat pulp after dentinl injury by means of immunohistochemistry and confocal laser scanning microscope. The Spague-Dawley rats weighing about 250-300gm were used. The animals were devided into normal control and experimental groups. Experimental animals were sacrified 1, 2, 4, 7, 10, 21days after dentinal injury (dentin cutting, and then acid etching with 35% phosphoric acid) on the maxillary molar teeth. The maxillary teeth and alveolar bone were removed and immersed in the 4% paraformaldehyde in 0.1M phosphate buffer (pH 7.4), then were decalcified with 15% formic acid for 10 days. Serial frozen $50{\mu}m$ thick sections were cut on a cryostat. The rabbit CGRP antibody was used as a primary antibody with a dilution of 1:2000 in 0.01M PB. The sections were incubated for 48 hours at $4^{\circ}C$, and placed into biotinylated antirabbit Ig G as a secondary anti body with dilution of 1:200 in 0.01M PB and incubated in ABC(avidin-biotin complex). The peroxidase reaction was visualized by incubating the sections in 0.05% 3,3 diaminobenzidine tetrahydrochloride containing 0.02% $H_2O_2$. For the confocal laser scanning microscopic examination, Primary antibody reaction was same as immunoperoxidase stainning, but fluorescein isothiocyanate(FITC)-conjugate antirabbit IgG as a secondary antibody was used. The confocal laser scanning microscope was used for the examination. A series of images of optical sections was collected with a 20x objective at $3{\mu}m$ intervals throughout the depth of specimen. FITC fluerescence was registrated through a 488nm and 568nm excitation filter, and images were saved on optical disk. The stereoscopic images and three dimentionnal images were reconstructed by computer software, and then were analyzed. The results were as follows : 1. In normal control group, CGRP containing nerve fibers were coursed through the root with very little branching, and then formed a dense network of terminals in coronal pulp. 2. A slight increase in CGRP containing nerve fibers at 1 and 2day postinjury was noted subjacent to the injury site. In the 4day group, there were an extensive increase in the number of reactive fibers, followed by a partial return toward normal levels at 7~10 day postinjury, and return by 21days. 3. The sprouting of the CGRP containing nerve fibers was evident within 2day after dentinal injury, and by 4days there was a maximal increased, but was decreased at 7days and returned to normal 10~21 day postinjury. 4. In confocal laser scanning microscopic exammination, the distinct distribution pattern and sprouting reaction of CGRP containing nerve fibers were observed in stereoscopic images and three dimentional images. These results suggest that CGRP containing nerve fiber can be important role in the response to dental injury and pain regulation.

  • PDF

데이터 마이닝의 범죄수사 적용 가능성 (Usefulness of Data Mining in Criminal Investigation)

  • 김준우;손중권;이상한
    • 대한수사과학회지
    • /
    • 제1권2호
    • /
    • pp.5-19
    • /
    • 2006
  • 데이터 마이닝은 컴퓨터와 정보처리의 발전으로 각기 다른 차원에서 다량으로 수집되는 데이터 속에서 숨은 의미나 패턴을 발견하는 유용한 기법이다. 의사결정나무, 신경망 모형, 규칙 귀납, K-평균 군집화, 시각화 등의 데이터 마이닝 개별 기법들은 산재해 있는 데이터에서 연관성을 분석하고, 이를 분류함으로써 일반화된 개념을 정의하고, 새로운 지식을 추론함으로써 실제 생활에 적용 가능한 예측을 가능하게 한다. 따라서 현재 데이터 마이닝은 기업의 마케팅 분야, 금융기관의 고객 분석, 통신 회사의 고객 이탈 방지 등에서 유용하게 활용되고 있다. 우리가 접해야 하는 정보의 양이 늘어나는 것은 범죄 수사에 있어서도 마찬가지 현상이다. 범죄와 범죄자에 대한 데이터는 축적되어 가지만 정작 개별 사안에 있어서는 중요한 데이터가 접근조차 되지 않고 있으며, 많은 데이터 속에서 이것이 내포하고 있는 숨은 의미를 지나치게 되는 경우도 많다. 본 연구에서는 선행 연구와 사례 적용을 통해 데이터 마이닝의 범죄 수사 적용 가능성과 한계점을 살펴보고자 하였다. 미제 사건으로 남는 경우가 많은 절도나 사기 같은 습관적 상습 범죄의 경우 데이터 마이닝의 분류, 군집화 기능을 활용 한다면 향후 여죄 추적에 효율적으로 활용될 수 있음을 파악할 수 있었고, 특히 다양한 문제에 적용 가능하고, 잡음에 대한 견고성이 있음에도 예측의 정확성을 지니고 있는 신경망 모형의 경우 패턴 인식을 통하여 범죄자 프로파일링이나 화상 자료 대비 시스템 구축에 충분히 활용될 것으로 생각한다. 특히 보험 사기 사례 적용에서 살펴본 바와 같이 마약, 테러와 같은 조직적 범죄수사나 자금세탁과 같은 금융 추적 수사의 경우 해당 자료의 방대함과 모호성으로 인해 수사를 하는 데 많은 어려움이 있지만 이러한 데이터 마이닝 가시화 기법을 적절히 활용한다면 전체적인 윤곽을 파악하는 데 매우 유용하며, 효율적인 수사가 가능함을 확인할 수 있었다. 그러나 데이터 마이닝은 예측 모델이므로 오류를 내재하고 있다는 점에서 수사 기관의 데이터 마이닝 접근은 조심스러워야 하며, 정보 독점화 현상과 개인 사생활 보호라는 측면에서 각 수사기관은 해당 법률에 정한 범위 내에서 해당 사건별로 데이터를 수집하고 이를 통합, 재구성하여 활용하는 측면으로 적용되어야 할 것이다. 또한 각 수사기관별로는 자신의 보유하고 있는 데이터에 대해 다차원 처리가 가능하도록 데이터베이스 시스템을 구축하여 데이터 마이닝이 적용 가능한 환경을 구축하도록 하여야 할 것이다. 아직은 논의의 초기 단계이므로 효과가 크게 부각되지는 않았지만 지금까지 제시한 문제에 대한 연구가 계속 이루어진다면 인권중심, 증거중심의 수사 개념을 바탕으로 적법절차에 의한 수사 활동을 요구받는 시대에 새로운 대안으로 자리 잡을 것이며, 수사의 과학화에 기여할 것으로 전망한다.

  • PDF

스마트폰 위치기반 어플리케이션의 이용의도에 영향을 미치는 요인: 프라이버시 계산 모형의 적용 (Factors Influencing the Adoption of Location-Based Smartphone Applications: An Application of the Privacy Calculus Model)

  • 차훈상
    • Asia pacific journal of information systems
    • /
    • 제22권4호
    • /
    • pp.7-29
    • /
    • 2012
  • Smartphone and its applications (i.e. apps) are increasingly penetrating consumer markets. According to a recent report from Korea Communications Commission, nearly 50% of mobile subscribers in South Korea are smartphone users that accounts for over 25 million people. In particular, the importance of smartphone has risen as a geospatially-aware device that provides various location-based services (LBS) equipped with GPS capability. The popular LBS include map and navigation, traffic and transportation updates, shopping and coupon services, and location-sensitive social network services. Overall, the emerging location-based smartphone apps (LBA) offer significant value by providing greater connectivity, personalization, and information and entertainment in a location-specific context. Conversely, the rapid growth of LBA and their benefits have been accompanied by concerns over the collection and dissemination of individual users' personal information through ongoing tracking of their location, identity, preferences, and social behaviors. The majority of LBA users tend to agree and consent to the LBA provider's terms and privacy policy on use of location data to get the immediate services. This tendency further increases the potential risks of unprotected exposure of personal information and serious invasion and breaches of individual privacy. To address the complex issues surrounding LBA particularly from the user's behavioral perspective, this study applied the privacy calculus model (PCM) to explore the factors that influence the adoption of LBA. According to PCM, consumers are engaged in a dynamic adjustment process in which privacy risks are weighted against benefits of information disclosure. Consistent with the principal notion of PCM, we investigated how individual users make a risk-benefit assessment under which personalized service and locatability act as benefit-side factors and information privacy risks act as a risk-side factor accompanying LBA adoption. In addition, we consider the moderating role of trust on the service providers in the prohibiting effects of privacy risks on user intention to adopt LBA. Further we include perceived ease of use and usefulness as additional constructs to examine whether the technology acceptance model (TAM) can be applied in the context of LBA adoption. The research model with ten (10) hypotheses was tested using data gathered from 98 respondents through a quasi-experimental survey method. During the survey, each participant was asked to navigate the website where the experimental simulation of a LBA allows the participant to purchase time-and-location sensitive discounted tickets for nearby stores. Structural equations modeling using partial least square validated the instrument and the proposed model. The results showed that six (6) out of ten (10) hypotheses were supported. On the subject of the core PCM, H2 (locatability ${\rightarrow}$ intention to use LBA) and H3 (privacy risks ${\rightarrow}$ intention to use LBA) were supported, while H1 (personalization ${\rightarrow}$ intention to use LBA) was not supported. Further, we could not any interaction effects (personalization X privacy risks, H4 & locatability X privacy risks, H5) on the intention to use LBA. In terms of privacy risks and trust, as mentioned above we found the significant negative influence from privacy risks on intention to use (H3), but positive influence from trust, which supported H6 (trust ${\rightarrow}$ intention to use LBA). The moderating effect of trust on the negative relationship between privacy risks and intention to use LBA was tested and confirmed by supporting H7 (privacy risks X trust ${\rightarrow}$ intention to use LBA). The two hypotheses regarding to the TAM, including H8 (perceived ease of use ${\rightarrow}$ perceived usefulness) and H9 (perceived ease of use ${\rightarrow}$ intention to use LBA) were supported; however, H10 (perceived effectiveness ${\rightarrow}$ intention to use LBA) was not supported. Results of this study offer the following key findings and implications. First the application of PCM was found to be a good analysis framework in the context of LBA adoption. Many of the hypotheses in the model were confirmed and the high value of $R^2$ (i.,e., 51%) indicated a good fit of the model. In particular, locatability and privacy risks are found to be the appropriate PCM-based antecedent variables. Second, the existence of moderating effect of trust on service provider suggests that the same marginal change in the level of privacy risks may differentially influence the intention to use LBA. That is, while the privacy risks increasingly become important social issues and will negatively influence the intention to use LBA, it is critical for LBA providers to build consumer trust and confidence to successfully mitigate this negative impact. Lastly, we could not find sufficient evidence that the intention to use LBA is influenced by perceived usefulness, which has been very well supported in most previous TAM research. This may suggest that more future research should examine the validity of applying TAM and further extend or modify it in the context of LBA or other similar smartphone apps.

  • PDF