• 제목/요약/키워드: complex learning system

검색결과 413건 처리시간 0.027초

합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로 (Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image)

  • 서이안;신경식
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.1-19
    • /
    • 2018
  • 최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식 (Accelerometer-based Gesture Recognition for Robot Interface)

  • 장민수;조용석;김재홍;손주찬
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.53-69
    • /
    • 2011
  • 로봇 자체 또는 로봇에 탑재된 콘텐츠와의 상호작용을 위해 일반적으로 영상 또는 음성 인식 기술이 사용된다. 그러나 영상 음성인식 기술은 아직까지 기술 및 환경 측면에서 해결해야 할 어려움이 존재하며, 실적용을 위해서는 사용자의 협조가 필요한 경우가 많다. 이로 인해 로봇과의 상호작용은 터치스크린 인터페이스를 중심으로 개발되고 있다. 향후 로봇 서비스의 확대 및 다양화를 위해서는 이들 영상 음성 중심의 기존 기술 외에 상호보완적으로 활용이 가능한 인터페이스 기술의 개발이 필요하다. 본 논문에서는 로봇 인터페이스 활용을 위한 가속도 센서 기반의 제스처 인식 기술의 개발에 대해 소개한다. 본 논문에서는 비교적 어려운 문제인 26개의 영문 알파벳 인식을 기준으로 성능을 평가하고 개발된 기술이 로봇에 적용된 사례를 제시하였다. 향후 가속도 센서가 포함된 다양한 장치들이 개발되고 이들이 로봇의 인터페이스로 사용될 때 현재 터치스크린 중심으로 된 로봇의 인터페이스 및 콘텐츠가 다양한 형태로 확장이 가능할 것으로 기대한다.

Wavelet Thresholding Techniques to Support Multi-Scale Decomposition for Financial Forecasting Systems

  • Shin, Taek-Soo;Han, In-Goo
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 1999년도 춘계공동학술대회-지식경영과 지식공학
    • /
    • pp.175-186
    • /
    • 1999
  • Detecting the features of significant patterns from their own historical data is so much crucial to good performance specially in time-series forecasting. Recently, a new data filtering method (or multi-scale decomposition) such as wavelet analysis is considered more useful for handling the time-series that contain strong quasi-cyclical components than other methods. The reason is that wavelet analysis theoretically makes much better local information according to different time intervals from the filtered data. Wavelets can process information effectively at different scales. This implies inherent support for multiresolution analysis, which correlates with time series that exhibit self-similar behavior across different time scales. The specific local properties of wavelets can for example be particularly useful to describe signals with sharp spiky, discontinuous or fractal structure in financial markets based on chaos theory and also allows the removal of noise-dependent high frequencies, while conserving the signal bearing high frequency terms of the signal. To data, the existing studies related to wavelet analysis are increasingly being applied to many different fields. In this study, we focus on several wavelet thresholding criteria or techniques to support multi-signal decomposition methods for financial time series forecasting and apply to forecast Korean Won / U.S. Dollar currency market as a case study. One of the most important problems that has to be solved with the application of the filtering is the correct choice of the filter types and the filter parameters. If the threshold is too small or too large then the wavelet shrinkage estimator will tend to overfit or underfit the data. It is often selected arbitrarily or by adopting a certain theoretical or statistical criteria. Recently, new and versatile techniques have been introduced related to that problem. Our study is to analyze thresholding or filtering methods based on wavelet analysis that use multi-signal decomposition algorithms within the neural network architectures specially in complex financial markets. Secondly, through the comparison with different filtering techniques results we introduce the present different filtering criteria of wavelet analysis to support the neural network learning optimization and analyze the critical issues related to the optimal filter design problems in wavelet analysis. That is, those issues include finding the optimal filter parameter to extract significant input features for the forecasting model. Finally, from existing theory or experimental viewpoint concerning the criteria of wavelets thresholding parameters we propose the design of the optimal wavelet for representing a given signal useful in forecasting models, specially a well known neural network models.

  • PDF

개발자 별 버그 해결 유형을 고려한 자동적 개발자 추천 접근법 (A Technique to Recommend Appropriate Developers for Reported Bugs Based on Term Similarity and Bug Resolution History)

  • 박성훈;김정일;이은주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권12호
    • /
    • pp.511-522
    • /
    • 2014
  • 소프트웨어 개발 및 유지보수 과정에서 여러 종류의 버그가 발생된다. 버그는 소프트웨어의 개발 및 유지 보수 시간을 증가시키는 주요원인으로 소프트웨어의 품질 저하를 초래한다. 버그의 발생을 사전에 완벽하게 방지하는 것은 불가능하다. 대신 버그 질라(Bugzilla), 멘티스BT(MantisGBT), 트랙 (Trac), 질라 (JIRA)와 같은 버그 트래킹 시스템을 이용하여 버그를 효과적으로 관리하는 것이 가능하다. 개발자 또는 사용자가 발생된 버그를 버그 트래킹 시스템에 보고하면, 프로젝트 매니저에 의해서 보고된 버그는 버그 해결에 적합한 개발자에게 전달되어 해결될 때까지 버그 트래킹 시스템에 의해서 추척된다. 여기서 프로젝트 매니저가 버그 해결에 적합한 개발자를 선별하는 것을 버그 분류 작업 (Bug triaging)이라고 하며, 대량으로 발생되는 버그 리포트들을 수동으로 분류하는 것은 프로젝트 매니저에게 있어서 매우 어려운 문제가 된다. 본 논문에서는 버그 트래킹 시스템에 저장된 과거에 해결된 버그 리포트에서 개발자 별 버그 해결 유형을 추출하고, 이를 활용한 버그 분류 작업, 즉 개발자 추천 방법을 제안한다. 먼저 버그 트래킹 시스템에서 각 개발자가 해결한 버그 리포트들을 분류한 후, 자연 언어 처리 알고리즘과 TF-IDF (Term frequency-Inverse document frequency)를 활용하여 각 개발자 별 단어 리스트를 생성한다. 그 후, 새로운 버그가 발생되었을 때 코사인 유사도를 통해서 생성된 개발자 별 단어 리스트와 새로운 버그 리포트의 단어 리스트를 비교하여 가장 유사한 단어 리스트를 가지는 개발자를 추천하는 방법이다. 두 오픈 소스 프로젝트인 이클립스 JDT.UI와 CDT.CORE를 대상으로 수행한 개발자 추천 실험에서 기계 학습 모델 기반의 추천 방법보다 제안하는 방법이 더 우수한 결과를 얻은 것을 확인하였다.

시공간 분석 기반 연쇄 범죄 거점 위치 예측 알고리즘 (Base Location Prediction Algorithm of Serial Crimes based on the Spatio-Temporal Analysis)

  • 홍동숙;김정준;강홍구;이기영;서종수;한기준
    • 한국공간정보시스템학회 논문지
    • /
    • 제10권2호
    • /
    • pp.63-79
    • /
    • 2008
  • 고급 GIS 및 복잡한 공간 분석 기술이 발전함에 따라 다양한 의사 결정 지원 시스템에서 지리적 혹은 공간적 문제 해결을 위한 고급 지식을 지원하기 위해 더욱 강력한 기술이 필요하게 되었다. 또한, 법집행 기관 및 수사 기관 등을 중심으로 효율적인 수사 및 향후 범죄 예방을 위해 과학 수사, 법 과학에 관한 연구의 필요성이 증대되고 있다. 특히, 연쇄 범죄의 공간적 패턴을 분석함으로써 범죄자의 거점 위치를 예측하기 위한 지리적 프로파일링(Geographic Profiling)에 대한 연구가 활발하다. 그러나, 기존의 지리적 프로파일링 연구에서는 공간적 패턴 분석을 위해 단순히 통계적 방법만을 사용하고 있고, 연쇄 범죄에 대한 다양한 공간적, 시간적 분석 기술을 지원하지 않으므로 거점 예측시 낮은 정확도를 보인다. 그러므로, 본 논문에서는 범행 위치의 공간적 분포와 범죄 발생의 시간적 분포 특성에 따라 연쇄 범죄의 시공간 패턴을 유형화하고, 이를 기반으로 연쇄 범죄의 거점 위치를 보다 정확하게 예측하는 알고리즘으로 STA-BLP(Spatio-Temporal Analysis based Base Location Prediction)을 제안한다. STA-BLP는 하나의 거점으로부터 특정 방향을 선호하여 이동하며 발생되는 연쇄 범죄의 비등방성 패턴을 고려하고, 동일한 경로에 대한 반복 이동에 대한 범죄자의 학습 효과를 고려함으로써 예측 정확도를 개선시킨다. 또한, 다수의 군집화된 범행 위치들로부터 각 군집에 소속된 범행 위치들에 대한 지역적 거점 위치 예측과 모든 범행 위치에 대한 전역적 거점 위치 예측을 통해 거점이 다수 존재하는 연쇄 범죄의 경우에도 보다 정확한 예측을 수행한다. 마지막으로 다양한 실험을 통해 기존에 제시된 알고리즘과 STA-BLP의 예측 정확도를 비교하여 제안 알고리즘의 우수성을 입증하였다.

  • PDF

과학 글쓰기를 통한 고등학생의 지구 시스템에 대한 이해와 시스템 사고의 분석 (An Analysis of High School Students' Systems Thinking and Understanding of the Earth Systems through their Science Writing)

  • 이현동;김태수;이효녕
    • 한국지구과학회지
    • /
    • 제38권1호
    • /
    • pp.91-104
    • /
    • 2017
  • 이 연구의 목적은 과학 글쓰기를 통해 고등학생의 지구 시스템에 대한 이해와 시스템 사고 과정을 분석하는 것이다. 글쓰기 활동에 활용한 자료는 지구과학 I 교과 내용 중 지구환경 변화에 관련된 3가지 주제(지구 온난화, 화산분출, 사막화)이며 이와 관련된 과제를 개발하였다. 개발한 자료는 고등학교 2학년 학생 8명을 대상으로 투입하였으며 작성한 과학 글쓰기 내용을 바탕으로 DAET-C 체크리스트와 지구 시스템에 관련된 개념을 구성요소로 하여 인과지도를 작성한 후, 이를 근거로 하여 시스템 사고의 관점에서 분석하였다. 그 결과로 첫째, 학생들은 지구 시스템의 구성, 지구 시스템의 상호작용, 지구과학적 소양, 시스템 순으로 지구 시스템을 이해하는 것으로 조사되었다. 둘째, 학생들의 과학 글쓰기 내용을 바탕으로 각각의 주제별로 인과지도를 작성한 결과 피드백 순환 고리가 나타난 학생은 연구에 참여한 8명 중 지구 온난화 관련 주제에서는 4명, 화산 분출 관련 주제에서는 1명, 사막화 관련 주제에서는 4명의 학생이 지구 시스템에서 하위 요소 간의 상호작용을 고려하는 시스템 사고를 하고 있는 것으로 조사되었다. 결론적으로 연구에 참여한 학생들은 지구환경 변화가 지구계 하위 요소 사이의 상호작용을 통해 복잡한 과정 속에서 복합적으로 이루어지고 있다는 사고를 하고 있었으나, 지구 시스템의 순환에 대한 과정에서 시스템 사고는 미흡한 것으로 나타났다. 과학 글쓰기 활동을 활용하여 지구 시스템 교육과 시스템 사고를 향상 시킬 수 있는 다양한 연구가 필요할 것이다.

산림 총일차생산량 예측의 공간적 확장을 위한 인공위성 자료와 기계학습 알고리즘의 활용 (Application of Machine Learning Algorithm and Remote-sensed Data to Estimate Forest Gross Primary Production at Multi-sites Level)

  • 이보라;김은숙;임종환;강민석;김준
    • 대한원격탐사학회지
    • /
    • 제35권6_2호
    • /
    • pp.1117-1132
    • /
    • 2019
  • 산림생태계 내의 총일차생산량은 산림 자원 생산량과 직결되고, 산림생태계의 건강성, 산림식물계절 및 생태계 서비스의 중요한 지표가 된다. 이 연구에서는 인공위성 자료와 기계학습 알고리즘을 활용하여 우리 나라의 산림유역의 총일차생산량을 연구하였다. 에디공분산 타워가 있는 6개 지점에서의 MODIS (Moderate Resolution Imaging Spectroradiometer) 산출물과 에디공분산타워의 총일차생산성으로 연구기간의 75%-80%에 해당하는 자료로 기계학습 알고리즘을 훈련하고 나머지 기간으로 구축된 모델의 총일차생산성 예측 결과를 검증하였다. 모델을 구축할 때 MODIS 지상 산출물과 대기 산출물을 조합하여 새로운 입력자료(e.g., 포화수증기압차)를 모델의 입력자료(Processed MODIS)로 사용하였을 때와 이러한 과정 없이 QC(Quality control)만 거친 MODIS 산출물을 그대로 입력자료(Unprocessed MODIS)로 사용하였을 때의 총일차생산량을 비교해 보고 그 활용 가능성에 대해 고찰하였다. 추가로 MODIS 총일차생산량 산출물(MYD17)과 에디공분산 총일차생산성 및 기계학습 알고리즘 기반의 총일차생산성과의 상관관계를 보고 그 적합성에 대해 논의하였다. 이 연구에서 사용된 기계학습 알고리즘은 Support Vector Machine (SVM)으로 산림생태계 연구에서 가장 많이 사용되고 있는 기계학습 알고리즘 중 하나이다. 기계학습 알고리즘 기반(SVM 모델)의 총일차생산량 예측 결과는 MODIS 총일차생산량 산출물(MYD17)보다 에디공분산 총일차생산량과 전반적으로 높은 상관관계를 보였고 특히 식생 성장을 시작하는 시점의 값을 좀더잘 예측하는 결과를 보였다. 단일 지역에서 Unprocessed MODIS 입력자료로 훈련된 SVM 모델 결과는 피어슨 상관계수 0.75 - 0.95 (p < 0.001), 6개의 연구 지점에서 훈련된 SVM 모델 결과는 피어슨 상관계수 0.77 - 0.94 (p < 0.001) 사이를 보였다. 이 결과는 훈련 자료에 다양한 이벤트들이 포함되면 모델의 예측력이 향상되는 가능성을 보여주었고 위성영상의 산출물을 재계산하여 새로운 산출물을 내는 과정을 거친 위성 자료가 아니어도 그 예측력에는 크게 문제가 없음을 보여주었다.

영재 개별화 교육에 관한 과학영재 지도교사들의 인식 (The Perception of Gifted Science Teachers Regarding a Individualized Instruction for Scientifically Gifted)

  • 김수연;한신;정진우
    • 대한지구과학교육학회지
    • /
    • 제9권2호
    • /
    • pp.199-216
    • /
    • 2016
  • 이 연구의 목적은 과학영재를 위한 개별화 교육과정 및 프로그램의 필요성에 관해 과학영재교육 담당 교사들은 어느 정도 인식하고 있는지를 과학영재 교육기관의 현실에 비추어 심층적으로 탐색하여 문제점들을 짚어보고, 이를 기반으로 하여 앞으로 보다 적극적인 과학영재 개별화 교육과정 및 프로그램의 적용 가능한 방향에 관해 시사점을 도출하는 것이다. 연구 참여자는 과학영재를 지도한 경험이 있고, 영재교육 혹은 과학교과교육 분야로 학위를 가지고 있는 현직 교사를 중심으로 15명을 섭외하여 심층 면담하였다. 연구 결과, 연구 참여자 대부분은 과학영재교육에 있어 이상적인 영재교육은 학생의 성향에 따른 개인적 요구를 이해해야 하고, 학생이 스스로 주도하는 연구방향이어야 한다는 내용으로 개별화 교육의 필요성을 인식하고 있었다. 과학영재 개별화 교육과 관련한 과학영재교육 기관 운영의 문제점으로 교사들은 재정적 지원의 감소를 가장 큰 문제로 들었으며, 교사의 소명의식 및 전문성이 매우 중요한 요소로 언급되었다. 시간, 장소의 제약과 함께 대학입시와 관련된 교육환경의 영향도 무시할 수 없다는 의견이 많았다. 영재교육기관 및 대상자의 과도한 확대와 표준화 된 측정 도구 및 프로그램이 없다는 것, 교사의 일관된 관찰 시스템이 부족하다는 의견도 많았다. 또한, 영재교육기관들의 획일화된 교육과정이 문제점으로 지적되었고, 이미 진행되고 있는 개별화 교육프로그램도 단점이 많고 미미하게 진행되고 있음을 지적하였다. 이에 따라 앞으로 과학영재 개별화 교육을 적용하기 위한 방향으로 교사들은 최적화 된 교육환경과 일관된 정책적 지원을 요구하였으며, 교사의 지속적 관찰이 가능한 시스템이 필요하다는 의견을 피력하였다. 또, 학생 요구에 부합하는 교육과정과 프로그램이 가장 우선시 되어야하며, 협동학습 내에서의 동료학습이 개별화 교육의 대안이 될 수 있다는 응답도 있었다. 이와 함께 개별화 교육에 따른 열등감을 극복하기 위한 처치가 뒤 따라야 한다는 의견도 많았다.

IoT 환경에서 인터유저빌리티(Interusability) 개선을 위한 사물성격(Personality of Things)중심의 UI 프로토타이핑에 대한 연구 (A Study on UI Prototyping Based on Personality of Things for Interusability in IoT Environment)

  • 안미경;박남춘
    • 한국HCI학회논문지
    • /
    • 제13권2호
    • /
    • pp.31-44
    • /
    • 2018
  • 사물인터넷(Internet of Things)시대에는 다양한 사물이 연결되어 사물들 스스로가 데이터를 획득하여 이를 바탕으로 학습하고 동작한다. 이는 사물이 사람의 모습을 닮아가고 있다고 볼 수 있고 변화한 사물과 사람이 어떻게 소통하는가를 설계하는 것이 핵심 이슈로 떠오르고 있다. 이러한 IoT 환경이 도래함에 따라 UI 디자인 분야에서도 많은 연구가 진행되었다. 멀티모달리티(Multi-modality)와 인터유저빌리티(Interusability) 등의 키워드를 통해서 UI 분야에서도 복합적인 요소를 고려하려는 연구가 진행됐음을 알 수 있다. 하지만 기존의 UI 디자인 방법론으로는 IoT 환경에서 사용자 인터페이스(UI)를 설계할 때 사물, 사람, 데이터가 상호작용하는 방식에 대해서 구조화하고 테스트하는데 한계가 있다. 따라서 본 연구에서 새로운 UI 프로토타이핑 방법을 제안하였다. 본 논문의 주요 분석과 연구는 다음과 같다: (1) 먼저 사물의 행동 프로세스를 정의하였다. (2) 행동 프로세스를 토대로 기존의 IoT 제품을 분석하였다. (3) 사물성격(Personality of Things)유형을 구분 지을 수 있는 프레임워크를 제작하였다. (4) 프레임워크를 바탕으로 사물성격(Personality of Things) 유형을 도출하였다. (5) 3개의 대표 사물성격(Personality of Things)을 실제 스마트 홈 서비스에 적용하여 프로토타이핑 테스트를 해보았다. 본 연구는 새로운 UI 프로토타이핑 방법을 제안하여 더 총체적인 방식으로 IoT 서비스에 대한 사용자 경험(UX)을 확인할 수 있었다는 데 의의가 있다. 또한, 향후 본 연구를 발전시켜 인공지능(AI) 기술이 발전한 환경에서 지능화된 서비스의 정체성(Identity) 확립의 도구로 사물성격(Personality of Things) 개념을 활용할 수 있을 것이라 생각한다.

  • PDF