• Title/Summary/Keyword: complex geometry buildings

Search Result 17, Processing Time 0.024 seconds

Knowledge Support and Automation of Paneled Building Envelopes for Complex Buildings using Script Programming

  • Park, Jungdae;Im, Jinkyu
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.85-90
    • /
    • 2015
  • Advances in the technology of computational design are giving architects and engineers the opportunity to analyze buildings with complex geometries. This study explores the optimization and automation process using the parametric design method, and uses digital tools to achieve surface representation and panelization for curved shaped office buildings. In this paper, we propose parametric algorithms of dimensional and geometric constraints using the Knowledge-ware scripts embedded in Gehry Technologies' Digital Project. The knowledge-based design methods proposed in this study can be used to systemize the knowledge possessed by experts in the form of data. Such knowledge is required to promote collaboration between designers and engineers in the process of CAD/CAE/CAM. The aim of this study is to integrate the process into design, which establishes an integrated process. This integration enables two-way feedback between design and construction data by combining the methods used in designing, engineering, and construction.

Research on the use of BIM for smart construction of Complex Geometry buildings (비정형 건축물의 스마트건설을 위한 BIM 활용에 대한 연구 - 세종포천선 처인휴게소 시공사례)

  • Park, Yang-Heum;Nam, Dong-Hun;Kim, Byung-Soo;Park, Jungjoon;Kim, Sungjin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.53-54
    • /
    • 2023
  • Because irregular shaped buildings are designed with various three-dimensional curves, the difficulty of design and construction is very high, and more construction drawings are needed to reduce construction errors. General 2D drawings may have limitations in conveying the information necessary for construction. By utilizing BIM, it is possible to three-dimensionally design parts that are not expressed on 2D drawings and additional structurall components required for the construction of the curved exterior finishing materials. This study examines the necessity of BIM at the construction stage, its performance through it, and how it can be linked to smart construction technology through construction BIM being applied to the new construction site of Sejong-Pocheon Line Cheoin Rest Area.

  • PDF

Review of Freeform Buildings using the Digital Fabrication (디지털 패브리케이션을 활용한 비정형 건축물의 시공공법 고찰)

  • Kim, Sung-Jin;Park, Young-Mi;Park, Sung-Jin;Park, Ki-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.175-176
    • /
    • 2015
  • Starting from Guggenheim Bilbao Museum in 1997, it has been increased steadily that complex geometry buildings using digital designs and construction process. Since 2010, the domestic Freeform design has been widely used for buildings such as Dongdaemoon Design Plaza, Seoul City Hall, Tri-Bowl, and etc. But there are many defects such as the increased cost and period of construction, and the declined quality of construction because of the lack of optimized method and engineering experiences. Therefore, this study has an effort to review case study of the recent freeform buildings and construction methods using digital fabrications. And this study proposed the improve method for the construction quality for freeform buildings.

  • PDF

Embossed Structural Skin for Tall Buildings

  • Song, Jin Young;Lee, Donghun;Erikson, James;Hao, Jianming;Wu, Teng;Kim, Bonghwan
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.1
    • /
    • pp.17-32
    • /
    • 2018
  • This paper explores the function of a structural skin with an embossed surface applicable to use for tall building structures. The major diagrid system with a secondary embossed surface structure provides an enhanced perimeter structural system by increasing tube section areas and reduces aerodynamic loads by disorienting major organized structure of winds. A parametric study used to investigate an optimized configuration of the embossed structure revealed that the embossed structure has a structural advantage in stiffening the structure, reducing lateral drift to 90% compared to a non-embossed diagrid baseline model, and results of wind load analysis using computational fluid dynamics, demonstrated the proposed embossed system can reduce. The resulting undulating embossed skin geometry presents both opportunities for incorporating versatile interior environments as well as unique challenges for daylighting and thermal control of the envelope. Solar and thermal control requires multiple daylighting solutions to address each local façade surface condition in order to reduce energy loads and meet occupant comfort standards. These findings illustrate that although more complex in geometry, architects and engineers can produce tall buildings that have less impact on our environment by utilizing structural forms that reduce structural steel needed for stiffening, thus reducing embodied $CO^2$, while positively affecting indoor quality and energy performance, all possible while creating a unique urban iconography derived from the performance of building skin.

Spatial and temporal distribution of driving rain on a low-rise building

  • Blocken, Bert;Carmeliet, Jan
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.441-462
    • /
    • 2002
  • This paper presents a practical numerical method to determine both the spatial and temporal distribution of driving rain on buildings. It is based on an existing numerical simulation technique and uses the building geometry and climatic data at the building site as input. The method is applied to determine the 3D spatial and temporal distribution of wind-driven rain on the facade a low-rise building of complex geometry. Distinct wetting patterns are found. The important causes giving rise to these particular patterns are identified : (1) sweeping of raindrops towards vertical building edges, (2) sweeping of raindrops towards top edges, (3) shelter effect by various roof overhang configurations. The comparison of the numerical results with full-scale measurements in both space and time for a number of on site recorded rain events shows the numerical method to yield accurate results.

Form Follows Function - The Composite Construction and Mixed Structures in Modern Tall Buildings

  • Peng, Liu
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • The tall building and super tall building has been a common building type in China, with multiple functions and complex geometry. Composite construction is broadly used in tall building structures and constitutes the mixed structure together with concrete and steel constructions. The mixture of the constructions is purposely designed for specific area based on the analysis results to achieve the best cost-effectiveness. New types of composite construction are conceived of by engineers for columns and walls. Material distribution is more flexible and innovative in the structural level and member level. However the reliability of computer model analysis should be verified carefully. Further researches in the design and build of composite construction are necessary to ensure the success of its application. Composite or Mixture Index is suggested to be used as a performance benchmark.

Study of Freeform Buildings using the Digital Fabrication (비정형 건축물 구현을 위한 Digital Fabrication의 활용방법 연구 -롯데월드타워 3D 포디움 시공사례-)

  • Kim, Sung-Jin;Park, Young-Mi;Park, Jung-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.52-53
    • /
    • 2017
  • Through the case study, we surveyed an applicability of digital fabrication in irregular-shaped building construction project. By digital fabrication, we mean is a precision manufacturing method has been used in aircraft, ship and car manufacturing industry. We collected construction-completed "LotteWorld Tower Podium" project data and analyzed its process in terms of construction quality andduration. The result shows that digital fabrication is considered a competitive technology that enabled to complete the project in seven months within 3mm surface curvature threshold. The digitalfabrication is expected to apply on a number of irregular-shaped building construction project.

  • PDF

In-Plane Extensional Buckling Analysis of Curved Beams under Uniformly Distributed Radial Loads Using DQM (등분포하중 하에서 미분구적법(DQM)을 이용한 곡선 보의 내평면 신장 좌굴해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.265-274
    • /
    • 2018
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has prompted studies directed toward the development of an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have been obtained traditionally using standard finite difference or finite element methods. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under the conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method (DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as the excessive use of storage due to the conditions of complex geometry and loading. The in-plane buckling of curved beams considering the extensibility of the arch axis was analyzed under uniformly distributed radial loads using the DQM. The critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results were compared with the precise results by other methods for cases, in which they were available. The DQM, using only a limited number of grid points, provided results that agreed very well (less than 0.3%) with the exact ones. New results according to diverse variations were obtained, showing the important roles in the buckling behavior of curved beams, and can be used in comparisons with other numerical solutions or with experimental test data.

Out-of-Plane Buckling Analysis of Curved Beams Considering Rotatory Inertia Using DQM (미분구적법(DQM)을 이용 회전관성을 고려한 곡선 보의 외평면 좌굴해석)

  • Kang, Ki-jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.300-309
    • /
    • 2016
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort towards developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of many investigations. Solutions to the relevant differential equations have traditionally been obtained by the standard finite difference or finite element methods. However, these techniques require a great deal of computer time for a large number of discrete nodes with conditions of complex geometry and loading. One efficient procedure for the solution of partial differential equations is the differential quadrature method (DQM). This method has been applied to many cases to overcome the difficulties of complex algorithms and high storage requirements for complex geometry and loading conditions. Out-of-plane buckling of curved beams with rotatory inertia were analyzed using DQM under uniformly distributed radial loads. Critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results were compared with exact results from other methods for available cases. The DQM used only a limited number of grid points and shows very good agreement with the exact results (less than 0.3% error). New results according to diverse variation are also suggested, which show important roles in the buckling behavior of curved beams and can be used for comparisons with other numerical solutions or experimental test data.

In-Plane Extensional Vibration Analysis of Asymmetric Curved Beams with Linearly Varying Cross-Section Using DQM (미분구적법(DQM)을 이용한 단면적이 선형적으로 변하는 비대칭 곡선보의 내평면 신장 진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.612-620
    • /
    • 2019
  • The increasing use of curved beams in buildings, vehicles, ships, and aircraft has results in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of a large number of investigations. Solutions of the relevant differential equations have traditionally been obtained by the standard finite difference. These techniques require a great deal of computer time as the number of discrete nodes becomes relatively large under conditions of complex geometry and loading. One of the efficient procedures for the solution of partial differential equations is the method of differential quadrature. The differential quadrature method(DQM) has been applied to a large number of cases to overcome the difficulties of the complex algorithms of programming for the computer, as well as excessive use of storage due to conditions of complex geometry and loading. In this study, the in-plane extensional vibration for asymmetric curved beams with linearly varying cross-section is analyzed using the DQM. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results are compared with the result by other methods for cases in which they are available. According to the analysis of the solutions, the DQM, used only a limited number of grid points, gives results which agree very well with the exact ones.