• Title/Summary/Keyword: complex geometries

Search Result 200, Processing Time 0.022 seconds

Numerical Simulation of Dam-Break Problem Using SU/PG Scheme (SU/PG 기법을 이용한 댐붕괴 수치모의)

  • Seo, Il Won;Song, Chang Geun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.198-198
    • /
    • 2011
  • The numerical simulation of dam break problem suffers from several challenges in terms of accuracy, stability, and versatility of the simulation algorithm since the water flow is generally discontinuous and presents abrupt variations. Thus, to obtain stable and accurate solutions, flow models for this purpose require numerical schemes provided with shock-capturing properties, and with the ability to work with flexible two-dimensional meshes. In this context, SU/PG method(Hughes and Brooks, 1979) is excellent candidate for the solution of the dam break problem. The weak formulation of the equations and the discontinuous polynomial basis lead to an accurate representation of bore waves(shocks). Furthermore, the discretization of the domain in finite elements is extremely effective in modeling complex geometries. In this study, a finite element model based on the SU/PG scheme is developed to solve shallow water equations and the model is applied to dam break problem. It is found that the present model accurately captures the bore wave that propagates downstream while spreading laterally and the depression wave that moves upstream. Furthermore, the propagation and formation of water surface profile compared favorably with those obtained by the previously published results.

  • PDF

Prediction of Insulation Capability for Ground Fault to Consider Asymmetry in SF6 Circuit Breaker

  • Oh, Yeon-Ho;Song, Ki-Dong;Kim, Hong-Kyu;Lee, Hae June;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2046-2051
    • /
    • 2015
  • Currently, most high-voltage gas circuit breakers (CBs) include asymmetrical geometries in the shield, the tank, the hot-gas exhaust, and the connection parts for bushings. For this reason, a 3-dimensional (3-D) analysis of the insulation capability is necessary, rather than a 2-D analysis. However, a 3-D analysis has difficulties due to the computational time and complex modeling. This paper presents a 3-D analysis considering the asymmetry in high-voltage gas CBs and a technique to reduce the calculation time. In the proposed technique, the arc plasma requiring the most computational time is first calculated by a 2-D analysis. Then, the results such as pressure, temperature, and velocity are input as a source for the 3-D analysis. This technique is applied to a 145kV self-blast-type CB and the analysis result exhibits good agreement with the experimental result.

A new numerical modelling for evaluating the stress intensity factors in 3-D fracture analysis

  • Cao, Zongjie;Liu, Yongyu
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.321-336
    • /
    • 2012
  • As an improvement on the isoparametric element method, the derivation presented in this paper is close to that done by Wang (1990) for the 2-D finite element. We extend this idea to solve 3-D crack problems in this paper. A new displacement modelling is constructed with local solutions of three-dimensional cracks and a quasi-compatible isoparametric element for three-dimensional fracture mechanics analysis is presented. The stress intensity factors can be solved directly by means of the present method without any post-processing. A new method for calculating the stress intensity factors of three-dimensional cracks with complex geometries and loads is obtained. Numerical examples are given to demonstrate the validity of the present method. The accuracy of the results obtained by the proposed element is demonstrated by solving several crack problems. The results illustrate that this method not only saves much calculating time but also increases the accuracy of solutions. Because this quasi-compatible finite element of 3-D cracks contains any singularities and easily meets the requirement of compatibility, it can be easily implemented and incorporated into existing finite element codes.

NEUTRON SCATTERING INVESTIGATIONS OF PROTON DYNAMICS OF WATER AND HYDROXYL SPECIES IN CONFINED GEOMETRIES

  • Chen, S.H.;Loong, C.K.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.201-210
    • /
    • 2006
  • This article presents a brief overview of an important area of neutron scattering: the general principles and techniques of elastic, quasielastic and inelastic scattering from a system composed predominately of incoherent scatterers. The methodology is then applied to the study of water, specifically when it is confined in nanometer-scale environments. The confined water exhibits uniquely anomalous properties in the supercooled state. It also nourishes biological functions, and supports essential chemical reactions in living systems. We focus on recent investigations of water encapsulated in nanoporous silica and carbon nanotubes, hydrated water in proteins and water or hydroxyl species incorporated in nanostructured minerals. Through these scientific examples, we demonstrate the advantages derived from the high sensitivity of incoherent neutron spectroscopy to hydrogen atom motions and hydrogen-bond dynamics, aided by rigorous data interpretation method using molecular dynamics simulations or theoretical modelling. This enables us to probe the inter-/intramolecular vibrations and relaxation/diffusion processes of water molecules in a complex environment.

Grain Size Effect on Mechanical Properties of Polycrystalline Graphene

  • Park, Youngho;Hyun, Sangil;Chun, Myoungpyo
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.375-378
    • /
    • 2016
  • Characteristics of nanocrystalline materials are known substantially dependent on the microstructure such as grain size, crystal orientation, and grain boundary. Thus it is desired to have systematic characterization methods on the various nanomaterials with complex geometries, especially in low dimensional nature. One of the interested nanomaterials would be a pure two-dimensional material, graphene, with superior mechanical, thermal, and electrical properties. In this study, mechanical properties of "polycrystalline" graphene were numerically investigated by molecular dynamics simulations. Subdomains with various sizes would be generated in the polycrystalline graphene during the fabrication such as chemical vapor deposition process. The atomic models of polycrystalline graphene were generated using Voronoi tessellation method. Stress strain curves for tensile deformation were obtained for various grain sizes (5~40 nm) and their mechanical properties were determined. It was found that, as the grain size increases, Young's modulus increases showing the reverse Hall-Petch effect. However, the fracture strain decreases in the same region, while the ultimate tensile strength (UTS) rather shows slight increasing behavior. We found that the polycrystalline graphene shows the reverse Hall-Petch effect over the simulated domain of grain size (< 40 nm).

3D Printable Composite Materials: A Review and Prospective (3D 프린터용 복합재료 연구 동향)

  • Oh, Eunyoung;Lee, Jinwoo;Suhr, Jonghwan
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.192-201
    • /
    • 2018
  • The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs and it is emerging as the next generation key of manufacturing. Due to the intrinsically limited mechanical/electrical properties and functionalities of printed pure polymer parts, there is a critical need to develop 3D printable polymer composites with high performance. This article gives a review on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the various fields.

Fatigue Life Estimation of Welding Details by Using a Notch Strain Approach (노치변형률법을 적용한 용접구조상세의 피로수명평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.977-985
    • /
    • 2004
  • An evaluation of fatigue life of welded components is complicated due to various geometrically complex welding details and stress raisers in vicinity of weld beads, ego under cuts, overlaps and blow holes. These factors have a considerable influence on the fatigue strength of welded joints, as well as the welding residual stress which is relaxed depending on the distribution of local stress at the front of the stress raisers. To reasonably evaluate fatigue life, the effect of geometries and welding residual stress should be taken into account. The several methods based on the notch strain approach have been proposed in order to accomplish this. These methods, however, result in differences between analytical and experimental results due to discrepancies in estimated amount of relaxed welding residual stress present. In this paper, an approach that involves the use of a modified notch strain approach considering geometrical effects and a residual stress relaxation model based on experimental results was proposed. The fatigue life for five types of representative welding details, ego cruciform, cover plate, longitudinal stiffener, gusset and side attachment joint, are evaluated using this method.

Lossless Compression and Rendering of Multiple Layer Displacement Map (다층 변위 맵의 비손실 압축과 렌더링)

  • Chun, Young-Jae;Kim, Hae-Dong;Cho, Sung-Hyun
    • Journal of Korea Game Society
    • /
    • v.9 no.6
    • /
    • pp.171-178
    • /
    • 2009
  • Multiple layer displacement mapping methods are able to represent more complex and general geometries which cannot be presented by single layer displacement mapping methods, and provide a realistic scene to digital contents such as 3D games and movies with relatively low costs. However, as we use more layers for details, data space is wasted more because lower layers have less displacement data than higher layers. In this paper, we suggest a lossless compression and rendering method of a multiple layer displacement map. Since we compress the map without data loss, the proposed method provides the same quality as the rendering result that uses an original multiple layer displacement map.

  • PDF

Numerical Analyses to Simulate Thermal Stratification Phenomenon in a Piping System (배관계통에서의 열성층 현상 모사를 위한 수치해석)

  • Jeong, Jae-Uk;Kim, Sun-Hye;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Kim, Jin-Su;Chung, Hae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.381-388
    • /
    • 2009
  • In some portions of nuclear piping systems, stratification phenomena may occur due to the density difference between hot and cold stream. When the temperature difference is large, the stratified flow under diverse operating conditions can produce high thermal stress, which leads to unanticipated piping integrity issues. The objectives of this research are to examine controvertible numerical factors such as model size, grid resolution, turbulent parameters, governing equation, inflow direction and pipe wall. Parametric three-dimensional computational fluid dynamics analyses were carried out to quantify effects of these parameters on the accuracy of temperature profiles in a typical nuclear piping with complex geometries. Then, as a key finding, it was recommended to use optimized mesh of real piping with the conjugated heat transfer condition for accurate thermal stratification analyses.

Application of Solifidification Grain Structure Simulation for the Casting by Cellular Automaton Method (Cellular Automaton법을 이용한 주물의 응고조직 시뮬레이션에의 적용)

  • Cho, In-Sung;Ohnaka, Itsuo
    • Journal of Korea Foundry Society
    • /
    • v.21 no.1
    • /
    • pp.41-47
    • /
    • 2001
  • Computer simulation of the solidification grain structure was applied to the casting process by using CA-DFDM. The Direct Finite Difference Method (DFDM) for temperature field calculation and latent heat treatment was coupled with Cellular Automaton (CA) method for the grain growth. 2-dimensional simulation of the solidification grain structures and calculation of the concentration fields were carried out and the calculated concentration distributions were compared with exact solution. Castings having complex geometries such as turbine blades were applied for 3-dimensional CA-DFDM. Effects of grain selector and mold extraction speed on the solidification grain structures in the turbine blade were examined.

  • PDF