• Title/Summary/Keyword: complex fast independent component analysis

Search Result 2, Processing Time 0.017 seconds

A Study on the Extraction of Basis Functions for ECG Signal Processing (심전도 신호 처리를 위한 기저함수 추출에 관한 연구)

  • Park, Kwang-Li;Lee, Jeon;Lee, Byung-Chae;Jeong, Kee-Sam;Yoon, Hyung-Ro;Lee, Kyoung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.293-299
    • /
    • 2004
  • This paper is about the extraction of basis function for ECG signal processing. In the first step, it is assumed that ECG signal consists of linearly mixed independent source signals. 12 channel ECG signals, which were sampled at 600sps, were used and the basis function, which can separate and detect source signals - QRS complex, P and T waves, - was found by applying the fast fixed point algorithm, which is one of learning algorithms in independent component analysis(ICA). The possibilities of significant point detection and classification of normal and abnormal ECG, using the basis function, were suggested. Finally, the proposed method showed that it could overcome the difficulty in separating specific frequency in ECG signal processing by wavelet transform. And, it was found that independent component analysis(ICA) could be applied to ECG signal processing for detection of significant points and classification of abnormal beats.

RSNT-cFastICA for Complex-Valued Noncircular Signals in Wireless Sensor Networks

  • Deng, Changliang;Wei, Yimin;Shen, Yuehong;Zhao, Wei;Li, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4814-4834
    • /
    • 2018
  • This paper presents an architecture for wireless sensor networks (WSNs) with blind source separation (BSS) applied to retrieve the received mixing signals of the sink nodes first. The little-to-no need of prior knowledge about the source signals of the sink nodes in the BSS method is obviously advantageous for WSNs. The optimization problem of the BSS of multiple independent source signals with complex and noncircular distributions from observed sensor nodes is considered and addressed. This paper applies Castella's reference-based scheme to Novey's negentropy-based algorithms, and then proposes a novel fast fixed-point (FastICA) algorithm, defined as the reference-signal negentropy complex FastICA (RSNT-cFastICA) for complex-valued noncircular-distribution source signals. The proposed method for the sink nodes is substantially more efficient than Novey's quasi-Newton algorithm in terms of computational speed under large numbers of samples, can effectively improve the power consumption effeciency of the sink nodes, and is significantly beneficial for WSNs and wireless communication networks (WCNs). The effectiveness and performance of the proposed method are validated and compared with three related BSS algorithms through theoretical analysis and simulations.